cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A131640 First differences are periodic: 50, 50, 75, 50, 50, 75, ...

Original entry on oeis.org

985, 1035, 1085, 1160, 1210, 1260, 1335, 1385, 1435, 1510, 1560, 1610, 1685, 1735, 1785, 1860, 1910, 1960, 2035, 2085, 2135, 2210, 2260, 2310, 2385, 2435, 2485, 2560, 2610, 2660, 2735, 2785, 2835, 2910, 2960, 3010, 3085, 3135, 3185, 3260, 3310, 3360
Offset: 0

Views

Author

Eric M. Adler (eadler(AT)simi.k12.ca.us), Sep 05 2007

Keywords

Crossrefs

Programs

  • Magma
    A131640:= func< n | (5/3)*(35*n + 591 - 5*(n mod 3) ) >;
    [A131640(n): n in [0..50]]; // G. C. Greubel, Sep 08 2025
    
  • Maple
    A131640 := proc(n) option remember ; if n =0 then 985 ; elif n mod 3 = 0 then A131640(n-1)+75 ; else A131640(n-1)+50 ; fi ; end: seq(A131640(n),n=0..80) ; # R. J. Mathar, Oct 24 2007
  • Mathematica
    LinearRecurrence[{1,0,1,-1},{985,1035,1085,1160},50] (* Ray Chandler, Aug 25 2015 *)
    Table[5*(35*n +591 -5*Mod[n,3])/3, {n,0,50}] (* G. C. Greubel, Sep 08 2025 *)
  • PARI
    Vec(5*(197+10*x+10*x^2-182*x^3)/((1-x)^2*(1+x+x^2)) + O(x^40)) \\ Andrew Howroyd, Feb 20 2018
    
  • SageMath
    def A131640(n): return 5*(35*n + 591 - 5*(n%3))//3
    print([A131640(n) for n in range(51)]) # G. C. Greubel, Sep 08 2025

Formula

G.f.: 5*(197 + 10*x + 10*x^2 - 182*x^3)/((1-x)^2*(1+x+x^2)). - R. J. Mathar, Nov 14 2007
From G. C. Greubel, Sep 08 2025: (Start)
a(n) = (5/3)*(35*(n+1) + 551 + 5*(A102283(n+1) + A102283(n))).
a(n) = (5/3)*(35*n + 586 + 5*A057078(n)).
E.g.f.: (5/3)*( 5*exp(-x/2)*( cos((sqrt(3)*x)/2) + (1/sqrt(3))*sin((sqrt(3)*x)/2)) + (586 + 35*x)*exp(x) ). (End)

Extensions

Definition supplied by N. J. A. Sloane, Sep 14 2007
More terms from R. J. Mathar, Oct 24 2007