cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A131647 Composite numbers that are products of distinct primes and divisible by the sum of those primes.

Original entry on oeis.org

30, 70, 105, 231, 286, 627, 646, 805, 897, 1122, 1581, 1798, 2730, 2958, 2967, 3055, 3526, 3570, 4070, 4543, 5487, 5658, 6461, 6745, 7198, 7881, 8778, 8970, 9222, 9282, 9717, 10366, 10370, 10626, 10707, 11130, 14231, 15015, 16377, 16530, 19866
Offset: 1

Views

Author

Tanya Khovanova, Sep 08 2007

Keywords

Examples

			1122 = 2*3*11*17 and 1122 is divisible by 2+3+11+17 = 33.
		

Crossrefs

Sequence union A000040 = A005117 intersect A086486. - Ray Chandler, Nov 29 2011

Programs

  • Maple
    with(numtheory): P:=proc(q) local a,k,n; for n from 2 to q do
    if issqrfree(n) and not isprime(n) then a:=ifactors(n)[2];
    if type(n/add(a[k][1],k=1..nops(a)),integer) then print(n); fi;
    fi; od; end: P(10^9); # Paolo P. Lava, Sep 19 2014
  • Mathematica
    Select[Range[2, 20000], PrimeQ[ # ] == False && Union[Transpose[FactorInteger[ # ]][[2]]] == {1} && Mod[ #, Plus @@ Transpose[FactorInteger[ # ]][[1]]] == 0 &]
    pdpQ[n_]:=Module[{fi=Transpose[FactorInteger[n]]},!PrimeQ[n]&&Max[fi[[2]]] == 1&&Divisible[n,Total[fi[[1]]]]]; Select[Range[2,50000],pdpQ] (* Harvey P. Dale, Oct 16 2013 *)
  • PARI
    lista(nn) = {forcomposite(n=1, nn, f = factor(n); nbp = #f~; if ((vecmax(f[,2]) == 1) && !(n % sum(i=1, nbp, f[i, 1])), print1(n, ", ")););} \\ Michel Marcus, Sep 19 2014