cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A131666 First differences of (A113405 prefixed with a 0).

Original entry on oeis.org

0, 0, 1, 1, 2, 3, 7, 14, 29, 57, 114, 227, 455, 910, 1821, 3641, 7282, 14563, 29127, 58254, 116509, 233017, 466034, 932067, 1864135, 3728270, 7456541, 14913081, 29826162, 59652323, 119304647, 238609294, 477218589, 954437177, 1908874354
Offset: 0

Views

Author

Paul Curtz, Sep 14 2007

Keywords

Programs

  • GAP
    a:=[0,0,1,1];; for n in [5..35] do a[n]:=2*a[n-1]-a[n-3]+2*a[n-4]; od; a; # G. C. Greubel, Nov 21 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 35); [0,0] cat Coefficients(R!( x^2*(1-x)/((1+x)*(1-2*x)*(1-x+x^2)) )); // G. C. Greubel, Nov 21 2019
    
  • Maple
    seq(coeff(series(x^2*(1-x)/((1+x)*(1-2*x)*(1-x+x^2)), x, n+1), x, n), n = 0..35); # G. C. Greubel, Nov 21 2019
  • Mathematica
    Table[(2*(-1)^n +2^n -3*((-1)^Floor[(n+1)/3] +(-1)^Floor[(n+2)/3])/2)/9, {n, 0, 35}] (* G. C. Greubel, Nov 21 2019 *)
  • PARI
    my(x='x+O('x^35)); concat([0,0], Vec(x^2*(1-x)/((1+x)*(1-2*x)*(1-x+x^2)))) \\ G. C. Greubel, Nov 21 2019
    
  • Sage
    def A131666_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P(x^2*(1-x)/((1+x)*(1-2*x)*(1-x+x^2))).list()
    A131666_list(35) # G. C. Greubel, Nov 21 2019
    

Formula

a(n+1) - 2*a(n) = 0, 1, -1, 0, -1, 1, ... is the hexaperiodic A092220 (corrected Sep 24 2007).
O.g.f.: x^2*(1-x)/((1+x)*(1-2*x)*(1-x+x^2)). - R. J. Mathar, Nov 23 2007
a(n) = Sum_{k=0..n-2} A001045(n-k+1)*binomial(k,n-k-2). - Paul Barry, Apr 22 2009
a(n) = (1/18)*( 2^(n+1) + 4*(-1)^n - 3*((-1)^floor((n+1)/3) + (-1)^floor((n+2)/3)) ). - G. C. Greubel, Nov 21 2019