cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A131090 First differences of A131666.

Original entry on oeis.org

0, 1, 0, 1, 1, 4, 7, 15, 28, 57, 113, 228, 455, 911, 1820, 3641, 7281, 14564, 29127, 58255, 116508, 233017, 466033, 932068, 1864135, 3728271, 7456540, 14913081, 29826161, 59652324, 119304647, 238609295, 477218588, 954437177, 1908874353
Offset: 0

Views

Author

Paul Curtz, Sep 24 2007

Keywords

Comments

The first differences b(n)=a(n+1)-a(n) obey the recurrence b(n+1)-2b(n) = (-3,3,-2,3,-3,2), continued with period 6.
The 2nd differences c(n)=b(n+1)-b(n) obey the recurrence c(n+1)-2c(n) = (6,-5,5,-6,5,-5), periodically continued with period 6.
The hexaperiodic coefficients in these recurrences for A113405, A131666 and their higher order differences define a table,
0, 0, 1, 0, 0, -1 <- A113405
0, 1, -1, 0, -1, 1 <- A131666
1, -2, 1, -1, 2, -1 <- a(n)
-3, 3, -2, 3, -3, 2 <- b(n)
6, -5, 5, -6, 5, -5 <- c(n)
-11,10,-11, 11,-10, 11
21,-21,22,-21, 21,-22
...
in which the first three columns are A024495, A131708 and A024493, multiplied by a checkerboard pattern of signs.

Programs

  • Mathematica
    LinearRecurrence[{2,0,-1,2},{0,1,0,1},40] (* Harvey P. Dale, Jan 15 2016 *)

Formula

a(n) = A131666(n+1)-A131666(n).
a(n+1)-2a(n) = A131556(n), a sequence with period length 6.
G.f.: -(x-1)^2*x / ((x+1)*(2*x-1)*(x^2-x+1)). - Colin Barker, Mar 04 2013

Extensions

Edited by R. J. Mathar, Jun 28 2008

A135254 Binomial transform of A131666.

Original entry on oeis.org

0, 0, 1, 4, 12, 33, 90, 252, 729, 2160, 6480, 19521, 58806, 176904, 531441, 1595052, 4785156, 14353281, 43053282, 129146724, 387420489, 1162241784, 3486725352, 10460235105, 31380882462, 94143001680, 282429536481, 847289140884
Offset: 0

Views

Author

Paul Curtz, Nov 30 2007

Keywords

Crossrefs

Cf. A133474.

Programs

  • GAP
    a:=[0,1,4];; for n in [4..30] do a[n]:=6*a[n-1]-12*a[n-2]+9*a[n-3]; od; Concatenation([0], a); # G. C. Greubel, Nov 21 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 30); [0,0] cat Coefficients(R!( x^2*(1-2*x)/((1-3*x+3*x^2)*(1-3*x)) )); // G. C. Greubel, Nov 21 2019
    
  • Maple
    seq(coeff(series(x^2*(1-2*x)/((1-3*x+3*x^2)*(1-3*x)), x, n+1), x, n), n = 0..30); # G. C. Greubel, Nov 21 2019
  • Mathematica
    CoefficientList[Series[x^2(2x-1)/((3x^2-3x+1)(3x-1)),{x,0,30}],x] (* or *) LinearRecurrence[{6,-12,9},{0,0,1,4},30] (* Harvey P. Dale, May 26 2011 *)
  • PARI
    my(x='x+O('x^30)); concat([0,0], Vec(x^2*(1-2*x)/((1-3*x+3*x^2)*(1-3*x)))) \\ G. C. Greubel, Nov 21 2019
    
  • Sage
    def A135254_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P(x^2*(1-2*x)/((1-3*x+3*x^2)*(1-3*x))).list()
    A135254_list(30) # G. C. Greubel, Nov 21 2019
    

Formula

From R. J. Mathar, Apr 02 2008: (Start)
O.g.f.: x^2*(1-2*x)/((1 - 3*x + 3*x^2)*(1-3*x)).
a(n) = 6*a(n-1) - 12*a(n-2) + 9*a(n-3). (End)

Extensions

More terms from R. J. Mathar, Apr 02 2008

A135258 Inverse binomial transform of A131666 after removing A131666(0) = 0.

Original entry on oeis.org

0, 1, -1, 2, -3, 7, -14, 29, -57, 114, -227, 455, -910, 1821, -3641, 7282, -14563, 29127, -58254, 116509, -233017, 466034, -932067, 1864135, -3728270, 7456541, -14913081, 29826162, -59652323, 119304647, -238609294, 477218589, -954437177, 1908874354
Offset: 0

Views

Author

Paul Curtz, Dec 01 2007

Keywords

Comments

The inverse binomial transform generally equals the sequence of first terms of the iterated differences (i.e., equals the diagonal of the arrangement in the standard hand-written display of the differences).

Crossrefs

Cf. A113405.

Programs

  • Mathematica
    LinearRecurrence[{-2, 0, 1, 2}, {0, 1, -1, 2}, 50] (* G. C. Greubel, Oct 04 2016 *)
  • PARI
    concat(0, Vec(x*(1 + x)/((x^2 +x +1)*(1 +2*x)*(1-x)) + O(x^50))) \\ Michel Marcus, Oct 05 2016

Formula

O.g.f.: x*(1 + x)/((x^2 +x +1)*(1 +2*x)*(1-x)). - R. J. Mathar, Jul 22 2008
a(n) = -2*a(n-1) + a(n-3) + 2*a(n-4). - G. C. Greubel, Oct 04 2016

Extensions

Edited and corrected by R. J. Mathar, Jul 22 2008

A135259 a(n) = 3*A131666(n) - A131666(n+1).

Original entry on oeis.org

0, -1, 2, 1, 3, 2, 7, 13, 30, 57, 115, 226, 455, 909, 1822, 3641, 7283, 14562, 29127, 58253, 116510, 233017, 466035, 932066, 1864135, 3728269, 7456542, 14913081, 29826163, 59652322, 119304647, 238609293, 477218590, 954437177, 1908874355, 3817748706
Offset: 0

Views

Author

Paul Curtz, Dec 01 2007

Keywords

Crossrefs

Cf. A131666.

Programs

  • GAP
    a:=[0,-1,2,1];; for n in [5..35] do a[n]:=2*a[n-1]-a[n-3]+2*a[n-4]; od; a; # G. C. Greubel, Nov 21 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 35); [0] cat Coefficients(R!( x*(1-x)*(1-3*x)/((2*x-1)*(x+1)*(1-x+x^2)) )); // G. C. Greubel, Nov 21 2019
    
  • Maple
    seq(coeff(series(x*(1-x)*(1-3*x)/((2*x-1)*(x+1)*(1-x+x^2)), x, n+1), x, n), n = 0 .. 35); # G. C. Greubel, Nov 21 2019
  • Mathematica
    LinearRecurrence[{2,0,-1,2}, {0,-1,2,1}, 35] (* G. C. Greubel, Oct 05 2016 *)
  • PARI
    concat(0, Vec(x*(1-x)*(1-3*x)/((2*x-1)*(x+1)*(1-x+x^2)) + O(x^35))) \\ Michel Marcus, Oct 05 2016
    
  • Sage
    def A135259_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P(x*(1-x)*(1-3*x)/((2*x-1)*(x+1)*(1-x+x^2))).list()
    A135259_list(35) # G. C. Greubel, Nov 21 2019
    

Formula

A131666(n) - a(n) = A092220(n).
O.g.f.: x*(1-x)*(1 -3*x)/( (2*x-1)*(x+1)*(1 -x +x^2) ). - R. J. Mathar, Jul 22 2008
a(n) = 2*a(n-1) - a(n-3) + 2*a(n-4). - G. C. Greubel, Oct 05 2016

Extensions

Edited and extended by R. J. Mathar, Jul 22 2008

A348405 a(0) = 1, a(n) + a(n+1) = round(2^n/9), n >= 0.

Original entry on oeis.org

1, -1, 1, -1, 2, 0, 4, 3, 11, 17, 40, 74, 154, 301, 609, 1211, 2430, 4852, 9712, 19415, 38839, 77669, 155348, 310686, 621382, 1242753, 2485517, 4971023, 9942058, 19884104, 39768220, 79536427, 159072867, 318145721, 636291456, 1272582898, 2545165810
Offset: 0

Views

Author

Paul Curtz, Oct 17 2021

Keywords

Crossrefs

Cf. A139797 (a(n) + a(n+1) = round(2^n/9) too, but a(0) = 0).

Programs

  • Mathematica
    CoefficientList[ Series[(x^4-x^3+2x-1)/((2*x^3-3*x^2+3*x-1)*(x+1)^2), {x, 0, 40}], x] (* Thomas Scheuerle, Oct 17 2021 *)
    nxt[{n_,a_}]:={n+1,Round[(2^n)/9]-a}; NestList[nxt,{0,1},40][[All,2]] (* or *) LinearRecurrence[{1,2,-1,1,2},{1,-1,1,-1,2},40] (* Harvey P. Dale, Apr 28 2022 *)

Formula

a(n+1) = 2*a(n) - A104581(n+6).
a(n) + a(n+1) = A113405(n).
a(n) + a(n+3) = A001045(n).
a(n+2) = a(n) + A131666(n).
From Thomas Scheuerle, Oct 18 2021: (Start)
G.f.: (x^4-x^3+2x-1)/((2*x^3-3*x^2+3*x-1)*(x+1)^2).
A172481(n) = Sum_{k=0..n} (-1)^(n-k)*binomial(n, k)*a(2*n-k). With negative sign for ...*a(1+2*n-k) and ...*a(3+2*n-k) too.
A175656(n) = Sum_{k=0..n} (-1)^(n-k)*binomial(n, k)*a(2+2*n-k).
A136298(n+1) = Sum_{k=0..n} (-1)^(n-k)*binomial(n, k)*a(4+2*n-k).
A348407(n) = Sum_{k=0..n} (-1)^(n-k)*binomial(n, k)*(a(2+2*n-k) - 2*a(1+2*n-k) - a(2*n-k)).
(End)

Extensions

a(22)-a(36) from Thomas Scheuerle, Oct 17 2021
Showing 1-5 of 5 results.