A348407 a(n) = ((n+1)*3*2^(n+1) + 29*2^n + (-1)^n)/9.
4, 9, 21, 47, 105, 231, 505, 1095, 2361, 5063, 10809, 22983, 48697, 102855, 216633, 455111, 953913, 1995207, 4165177, 8679879, 18058809, 37515719, 77827641, 161247687, 333680185, 689729991, 1424199225, 2937876935, 6054710841, 12467335623, 25650499129, 52732654023, 108328619577
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (3,0,-4).
Programs
-
Mathematica
Array[((# + 1)*3*2^(# + 1) + 29*2^# + (-1)^#)/9 &, 33, 0] (* Michael De Vlieger, Oct 19 2021 *) LinearRecurrence[{3,0,-4},{4,9,21},40] (* Harvey P. Dale, Aug 12 2023 *)
Formula
a(n) = round(((n+1)*3*2^(n+1) + 29*2^n)/9).
a(n) = 2^(n+2) + A113861(n).
a(n) = 2^(n+2) + n*2^n - A045883(n) = 2^(n+2) + n*2^n - round(((3*n+1)*2^n)/9).
a(n+1) - 2*a(n) = A001045(n+2).
A partial binomial transform in two parts:
(Partial means a diagonal in a difference table a(0), a(2)-a(1), ... . This is partial because one diagonal alone is no invertible transform.)
A001787(n+2) = Sum_{k=0..n} (-1)^(n-k)*binomial(n, k)*a(2*n-k)
= (n+2)*2^(n+1).
A052951(n+1) = Sum_{k=0..n} (-1)^(n-k)*binomial(n, k)*(a(1+2*n-k) - a(2*n-k))
= (n+2)*2^(n+1) + 2^n.
The inverse transform:
a(n+1) = Sum_{k=0..floor(n/2)} binomial(n-k, k)*(k+2)*2^(k+1)
+ Sum_{k=0..floor((n-1)/2)} binomial(n-k-1, k)*((k+2)*2^(k+1) + 2^k).
From Stefano Spezia, Oct 20 2021: (Start)
G.f.: (4 - 3*x - 6*x^2)/((1 + x)*(1 - 2*x)^2).
a(n) = 3*a(n-1) - 4*a(n-3) for n > 2. (End)
Comments