cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A131717 Natural numbers A000027 with 6n+4 and 6n+5 terms swapped.

Original entry on oeis.org

1, 2, 3, 5, 4, 6, 7, 8, 9, 11, 10, 12, 13, 14, 15, 17, 16, 18, 19, 20, 21, 23, 22, 24, 25, 26, 27, 29, 28, 30, 31, 32, 33, 35, 34, 36, 37, 38, 39, 41, 40, 42, 43, 44, 45, 47, 46, 48, 49, 50, 51, 53, 52, 54, 55, 56, 57, 59, 58, 60, 61, 62, 63, 65, 64, 66, 67, 68, 69, 71, 70, 72
Offset: 1

Views

Author

Paul Curtz, Sep 15 2007

Keywords

Comments

Hexaperiodic differences: 1, 1, 2, -1, 2, 1; 0, 1, -3, 3, -1, 0 (even palindromic signed); 1,-4, 6, -4, 1, 0.

Crossrefs

Cf. A131042.

Programs

  • Maple
    seq(seq(6*i+s,s=[1,2,3,5,4,6]),i=0..100); # Robert Israel, Nov 11 2014
  • Mathematica
    Drop[CoefficientList[Series[x (2x^5 - x^4 + 2x^3 + x^2 + x + 1)/((x - 1)^2 (x + 1) (x^2 - x + 1) (x^2 + x + 1)), {x, 0, 100}], x], 1] (* Indranil Ghosh, Apr 18 2017 *)
    Table[Sum[(7 #1 - 13 #2 + 17 #3 - 3 #4 + 2 #5 + 2 #6)/30 & @@ Mod[k + Range[0, 5], 6], {k, 0, n}], {n, 0, 71}] (* Michael De Vlieger, Apr 22 2017 *)
  • PARI
    Vec(x*(2*x^5-x^4+2*x^3+x^2+x+1)/((x-1)^2*(x+1)*(x^2-x+1)*(x^2+x+1)) + O(x^100)) \\ Colin Barker, Nov 11 2014

Formula

a(n) = A008585(n/3) if n is congruent to 0 mod 3. - Frieder Mittmann, Nov 11 2014
a(n) = A007310((n-1)/3) if n is congruent to 1 mod 3. - Frieder Mittmann, Nov 11 2014
a(n) = A047235((n-2)/3) if n is congruent to 2 mod 3. - Frieder Mittmann, Nov 11 2014
G.f.: x*(2*x^5-x^4+2*x^3+x^2+x+1) / ((x-1)^2*(x+1)*(x^2-x+1)*(x^2+x+1)). - Colin Barker, Nov 11 2014
a(n) = (24*floor(n/6)-3*(n^2-3*n-2)-9*floor(n/3)*(3*floor(n/3)-2*n+3)+(-1)^floor(n/3)*(3*n^2-5*n-6+3*floor(n/3)*(9*floor(n/3)-6*n+5)))/4. - Luce ETIENNE, Apr 18 2017