cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A373300 Sum of successive integers in a row of length p(n) where p counts integer partitions.

Original entry on oeis.org

1, 5, 15, 45, 105, 264, 555, 1221, 2445, 4935, 9324, 17941, 32522, 59400, 104808, 184569, 315711, 540540, 902335, 1504800, 2462724, 4014513, 6444425, 10316250, 16283707, 25610886, 39841865, 61720659, 94687230, 144731706, 219282679, 330996105, 495901413, 740046425
Offset: 1

Views

Author

Olivier Gérard, May 31 2024

Keywords

Comments

The length of each row is given by A000041.
As many sequences start like the positive integers, their row sums when disposed in this shape start with the same values.
Here is a sample list by A-number order of the sequences which are sufficiently close to A000027 to have the same row sums for at least 8 terms.

Examples

			Let's put the list of integers in a triangle whose rows have length p(n), number of integer partitions of n.
.
    1 |  1
    5 |  2  3
   15 |  4  5  6
   45 |  7  8  9 10 11
  105 | 12 13 14 15 16 17 18
  264 | 19 20 21 22 23 24 25 26 27 28 29
  555 | 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
.
The sequence gives the row sums of this triangle.
		

Crossrefs

Cf. A000027, seen as a triangle with shape A000041.
Cf. A373301, the same principle, but starting from integer zero instead of 1.
Cf. A006003, row sums of the integers but for the linear triangle.

Programs

  • Mathematica
    Module[{s = 0},
     Table[s +=
       PartitionsP[n - 1]; (s + PartitionsP[n])*(s + PartitionsP[n] - 1)/2 -
       s*(s - 1)/2, {n, 1, 30}]]

A131017 Period 6: repeat [1, 1, 2, -1, 2, 1].

Original entry on oeis.org

1, 1, 2, -1, 2, 1, 1, 1, 2, -1, 2, 1, 1, 1, 2, -1, 2, 1, 1, 1, 2, -1, 2, 1, 1, 1, 2, -1, 2, 1, 1, 1, 2, -1, 2, 1, 1, 1, 2, -1, 2, 1, 1, 1, 2, -1, 2, 1, 1, 1, 2, -1, 2, 1, 1, 1, 2, -1, 2, 1, 1, 1, 2, -1, 2, 1, 1, 1, 2, -1, 2, 1, 1, 1, 2, -1, 2, 1, 1, 1, 2, -1, 2, 1, 1, 1, 2, -1, 2, 1, 1, 1, 2, -1, 2, 1, 1, 1, 2, -1, 2, 1, 1, 1, 2, -1, 2, 1, 1, 1, 2, -1, 2, 1, 1, 1, 2
Offset: 0

Views

Author

Paul Curtz, Sep 23 2007

Keywords

Crossrefs

Programs

  • Mathematica
    Flatten[Table[{1, 1, 2, -1, 2, 1}, {20}]] (* Wesley Ivan Hurt, Jun 24 2022 *)
    PadRight[{},120,{1,1,2,-1,2,1}] (* Harvey P. Dale, Oct 10 2023 *)

Formula

|a(n)| = A131718(n).
a(n) = A131717(n+1) - A131717(n).
O.g.f.: (1+x+2*x^2-x^3+2*x^4+x^5)/((1-x)*(1+x)*(x^2+x+1)*(x^2-x+1)). - R. J. Mathar, Jul 07 2008
a(n) = (3+2*(-1)^n+cos(n*Pi/3)-3*cos(n*Pi/3)^2+3*sin(n*Pi/3)^2)/3. - Wesley Ivan Hurt, Jun 24 2022

Extensions

Edited by R. J. Mathar, Jul 07 2008
Showing 1-2 of 2 results.