cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A131711 Period 12: repeat 0, 1, 2, 5, 2, 9, 0, 9, 8, 5, 8, 1.

Original entry on oeis.org

0, 1, 2, 5, 2, 9, 0, 9, 8, 5, 8, 1, 0, 1, 2, 5, 2, 9, 0, 9, 8, 5, 8, 1, 0, 1, 2, 5, 2, 9, 0, 9, 8, 5, 8, 1, 0, 1, 2, 5, 2, 9, 0, 9, 8, 5, 8, 1
Offset: 0

Views

Author

Paul Curtz, Sep 14 2007

Keywords

Comments

Final digits of Pell numbers. First differences: 1, 1, 3, -3, 7, -9, 9, -1, -3, 3 -7, -1, 1 (cf. A131707).
Can be though of as 2 interlocking sequences, each of the form a(n) = a(n - 1) - a(n - 2) + a(n - 3) - a(n - 4) + a(n - 5).

Programs

Formula

G.f.: (x^8+8x^7+4x^6+5x^4+4x^2+2x+1)x/((1-x) (1+x) (x^2+x+1) (x^2-x+1) (x^4-x^2+1)). a(n) = |A131201(n)| = A000129(n) mod 10 = A000129(n)-10*A131727(n). [From R. J. Mathar, Sep 20 2008]
a(n) = 25/6 -4*cos(Pi*n/6)/sqrt(3) -sqrt(3)*sin(Pi*n/6) -5*cos(Pi*n/3)/3 -5*cos(2*Pi*n/3)/3 +4*cos(5*Pi*n/6)/sqrt(3) +sqrt(3)*sin(5*Pi*n/6) -5*(-1)^n/6. - R. J. Mathar, Oct 08 2011

A131607 Pell companion numbers A001333 without last digit.

Original entry on oeis.org

1, 4, 9, 23, 57, 139, 336, 811, 1960, 4732, 11424, 27580, 66585, 160752, 388089, 936931, 2261953, 5460839, 13183632, 31828103, 76839840, 185507784, 447855408, 1081218600, 2610292609, 6301803820, 15213900249, 36729604319, 88673108889, 214075822099, 516824753088
Offset: 4

Views

Author

Paul Curtz, Oct 02 2007

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Floor[(((1 - Sqrt[2])^n + (1 + Sqrt[2])^n)/2)/10], {n, 4, 29}] (* Metin Sariyar, Jan 03 2020 *)
  • PARI
    a(n)={polcoef((1 - x) / (1 - 2*x - x^2) + O(x*x^n), n)\10} \\ Andrew Howroyd, Jan 02 2020

Formula

a(n) = floor(A001333(n) / 10). - Andrew Howroyd, Jan 02 2020
Conjectures from Colin Barker, Jan 03 2020: (Start)
G.f.: x^4*(1 + x - 2*x^2 + x^3 + x^4) / ((1 - x)*(1 + x^2)*(1 - 2*x - x^2)*(1 - x^2 + x^4)).
a(n) = 3*a(n-1) - a(n-2) - a(n-3) - a(n-6) + 3*a(n-7) - a(n-8) - a(n-9) for n>12.
(End)

Extensions

Offset changed and terms a(24) and beyond from Andrew Howroyd, Jan 02 2020
Showing 1-2 of 2 results.