A131737 Essentially even numbers followed by duplicated odd numbers.
0, 1, 1, 1, 2, 3, 3, 4, 5, 5, 6, 7, 7, 8, 9, 9, 10, 11, 11, 12, 13, 13, 14, 15, 15, 16, 17, 17, 18, 19, 19, 20, 21, 21, 22, 23, 23, 24, 25, 25, 26, 27, 27, 28, 29, 29, 30, 31, 31, 32, 33, 33, 34, 35, 35, 36, 37, 37, 38, 39, 39, 40, 41, 41, 42, 43, 43, 44, 45
Offset: 0
Examples
G.f. = x + x^2 + x^3 + 2*x^4 + 3*x^5 + 3*x^6 + 4*x^7 + 5*x^8 + 5*x^9 + 6*x^10 + ...
Links
- Index entries for linear recurrences with constant coefficients, signature (1, 0, 1, -1).
Crossrefs
Cf. A004396.
Programs
-
Maple
A131737 := proc(n): (1/9)*add(5*(k mod 3)+2*((k+1) mod 3)-((k+2) mod 3),k=0..n)-1+(binomial(2*n,n) mod 2)+(binomial((n+1)^2,n+3) mod 2) end: seq( A131737(n),n=0..74); # Johannes W. Meijer, Jun 27 2011
-
Mathematica
Join[{0, 1}, LinearRecurrence[{1, 0, 1, -1}, {1, 1, 2, 3}, 68]] (* Georg Fischer, Feb 27 2019 *) Insert[Flatten[Table[If[EvenQ[n],n,{n,n}],{n,0,70}]],1,2] (* Harvey P. Dale, Sep 04 2020 *)
-
PARI
{a(n) = (n==0) + (n==1) + (n\3)*2 + (n%3) - 1}; /* Michael Somos, Jan 11 2011 */
Formula
a(0)=0. a(1)=a(2)=1. a(3*n)=A005408(n-1). a(3*n+1)=a(3*n)+1. a(3*n+2)=a(3*n)+2, n>0.
O.g.f.: x*(1+x^4)/((1-x)^2*(x^2+x+1)). a(n)=(2*n-2-A057078(n))/3, n>1. - R. J. Mathar, Jul 16 2008
Euler transform of length 8 sequence [ 1, 0, 1, 1, 0, 0, 0, -1]. - Michael Somos, Jan 11 2011
0 = a(n) - a(n+1) - a(n+3) + a(n+4) if n>1. - Michael Somos, Nov 11 2015
a(n) = floor((2*n-1)/3) for n > 1. - Werner Schulte, Feb 27 2019
Extensions
Edited by R. J. Mathar, Jul 16 2008