cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A131750 Numbers that are both centered triangular and centered square.

Original entry on oeis.org

1, 85, 16381, 3177721, 616461385, 119590330861, 23199907725541, 4500662508423985, 873105326726527441, 169377932722437899461, 32858445842826225967885, 6374369115575565399870121
Offset: 1

Views

Author

Richard Choulet, Sep 20 2007

Keywords

Comments

We solve r^2+(r+1)^2=0.5*(3*p^2+3*p+2), which is equivalent to (4*r+2)^2=3*(2*p+1)^2+1.
The Diophantine equation X^2=3*Y^2+1 gives X by A001075 and Y by A013453. The return to r gives the sequence 0,6,90,1260,17556,... which satisfies the formulas a(n+2)=14*a(n+1)-a(n)+6 and a(n+1)=7*a(n)+3+(48*a(n)^2+48*a(n)+9)^0.5 and the return to p the sequence A001921 which satisfies this new relation: a(n+1)=7*a(n)+sqrt(48*a(n)^2+48*a(n)+16). Then we obtain the present sequence.

Crossrefs

Intersection of A001844 and A005448.

Programs

  • Magma
    [n le 2 select 1 else Floor(97*Self(n-2) - 54 + 14*Sqrt(48*Self(n-2)^2-54*Self(n-2)+15)): n in [2..30]]; // Vincenzo Librandi, Aug 26 2015
  • Maple
    A131750 := proc(n) coeftayl(x*(1-110*x+x^2)/(1-x)/(1-194*x+x^2),x=0,n) ; end: seq(A131750(n),n=1..20) ; # R. J. Mathar, Oct 24 2007
  • Mathematica
    LinearRecurrence[{195,-195,1},{1,85,16381},20] (* Harvey P. Dale, Apr 26 2018 *)

Formula

a(n+2) = 195*a(n+1)-195*a(n)+a(n-1).
a(n+1) = 97*a(n) - 54 + 14*sqrt(48*a(n)^2-54*a(n)+15).
G.f.: x*(1-110*x+x^2)/((1-x)*(1-194*x+x^2)).

Extensions

More terms from R. J. Mathar, Oct 24 2007
Recurrences corrected by Robert Israel, Aug 26 2015
Name corrected by Daniel Poveda Parrilla, Sep 19 2016