A131758 Coefficients of numerators of rational functions whose binomial transforms give the normalized polylogarithms Li(-n,t)/n!.
1, 0, 1, -1, 1, 2, 4, -14, 10, 6, -15, 83, -157, 89, 24, 56, -424, 1266, -1724, 826, 120, -185, 1887, -8038, 17642, -19593, 8287, 720, 204, -4976, 36226, -126944, 239576, -234688, 90602, 5040
Offset: 0
References
- M. Beck and S. Robins, Computing the Continuous Discretely, illustrated by D. Austin, Springer, 2007.
Links
- G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened
- P. Gunnells and F. Villegas Lattice polytopes, Hecke operators, and the Ehrhart polynomial, arXiv:math/0405573 [math.CO], 2004.
Programs
-
Mathematica
a[n_, m_] := (-1)^n *n!*Sum[(-1)^k*Binomial[n+1, k]*LaguerreL[n, m-k+1], {k, 0, m}]; Table[a[n, m], {n, 0, 8}, {m, 0, n}] // Flatten (* Jean-François Alcover, Apr 23 2014 *)
Formula
a(n,m) = (-1)^n*n!*Sum_{k=0..m} (-1)^k*C(n+1,k)*Lag(n, m-k+1).
Extensions
A173018 given as reference for Eulerian polynomials and typo in a Laguerre function corrected by Tom Copeland, Oct 02 2014
Comments