cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A131202 A coefficient tree from the list partition transform relating A111884, A084358, A000262, A094587, A128229 and A131758.

Original entry on oeis.org

1, -1, 3, 1, -8, 13, 1, 11, -61, 73, -19, 66, 66, -494, 501, 151, -993, 2102, -298, -4293, 4051, -1091, 9528, -33249, 52816, -21069, -39528, 37633, 7841, -82857, 378261, -929101, 1207299, -560187, -375289, 394353, -56519, 692422, -3832928, 12255802, -23834210, 26643994, -12620672, -3481562, 4596553
Offset: 1

Views

Author

Tom Copeland, Oct 22 2007, Nov 30 2007

Keywords

Comments

Construct the infinite array of polynomials
a(0,t) = 1
a(1,t) = 1
a(2,t) = -1 + 3*t
a(3,t) = 1 - 8*t + 13*t^2
a(4,t) = 1 + 11*t - 61*t^2 + 73*t^3
a(5,t) = -19 + 66*t + 66*t^2 - 494*t^3 + 501*t^4
a(6,t) = 151 - 993*t + 2102*t^2 - 298*t^3 - 4293*t^4 + 4051*t^5
This array is the reciprocal array of the following array b(n,t) under the list partition transform and its associated operations described in A133314.
b(0,t) = 1 and b(n,t) = -A000262(n)*(t-1)^(n-1) for n > 0.
Then A111884(n) = a(n,0).
Lower triangular matrix A094587 = binomial(n,k)*a(n-k,1).
A084358(n) = a(n,2).
Signed A128229 = matrix inverse of binomial(n,k)*a(n-k,1) = binomial(n,k)*b(n-k,1) = A132013.
As t tends to infinity, a(n,t)/t^(n-1) tends to A000262(n) for n > 0.
The P(n,t) of A131758 can be constructed from T(n,k,t) = binomial(n,k)*a(n-k,t) by letting T(n,k,t) multiply the column vector c(n,t) given by c(0,t) = 0! and c(n,t) = n!*(t-1)^(n-1) for n > 0. The P(n,t) have rich associations to other sequences.

Programs

  • Mathematica
    CoefficientList[#, t] & /@ (# Range@Length@#!) &@ Rest@CoefficientList[(t-1) / (t - Exp[x(t-1)/(1-x(t-1))]) + O[x]^10 // Simplify, x] // Flatten (* Andrey Zabolotskiy, Feb 19 2024 *)
  • PARI
    T(n) = [Vecrev(p) | p<-Vec(-1 + serlaplace((y-1) / (y - exp(x*(y-1)/(1-x*(y-1)) + O(x*x^n) ))))]
    { my(A=T(7)); for(i=1, #A, print(A[i])) } \\ Andrew Howroyd, Feb 19 2024

Formula

E.g.f. for the row polynomials, which are a(n, t) for n > 0, is:
(t-1) / (t - exp(x*(t-1)/(1-x*(t-1)))).
E.g.f. for the polynomials b(n, t), introduced above, is the reciprocal of that.

Extensions

Rows 7-9 added and offset changed by Andrey Zabolotskiy, Feb 19 2024

A000670 Fubini numbers: number of preferential arrangements of n labeled elements; or number of weak orders on n labeled elements; or number of ordered partitions of [n].

Original entry on oeis.org

1, 1, 3, 13, 75, 541, 4683, 47293, 545835, 7087261, 102247563, 1622632573, 28091567595, 526858348381, 10641342970443, 230283190977853, 5315654681981355, 130370767029135901, 3385534663256845323, 92801587319328411133, 2677687796244384203115, 81124824998504073881821
Offset: 0

Views

Author

Keywords

Comments

Number of ways n competitors can rank in a competition, allowing for the possibility of ties.
Also number of asymmetric generalized weak orders on n points.
Also called the ordered Bell numbers.
A weak order is a relation that is transitive and complete.
Called Fubini numbers by Comtet: counts formulas in Fubini theorem when switching the order of summation in multiple sums. - Olivier Gérard, Sep 30 2002 [Named after the Italian mathematician Guido Fubini (1879-1943). - Amiram Eldar, Jun 17 2021]
If the points are unlabeled then the answer is a(0) = 1, a(n) = 2^(n-1) (cf. A011782).
For n>0, a(n) is the number of elements in the Coxeter complex of type A_{n-1}. The corresponding sequence for type B is A080253 and there one can find a worked example as well as a geometric interpretation. - Tim Honeywill and Paul Boddington, Feb 10 2003
Also number of labeled (1+2)-free posets. - Detlef Pauly, May 25 2003
Also the number of chains of subsets starting with the empty set and ending with a set of n distinct objects. - Andrew Niedermaier, Feb 20 2004
From Michael Somos, Mar 04 2004: (Start)
Stirling transform of A007680(n) = [3,10,42,216,...] gives [3,13,75,541,...].
Stirling transform of a(n) = [1,3,13,75,...] is A083355(n) = [1,4,23,175,...].
Stirling transform of A000142(n) = [1,2,6,24,120,...] is a(n) = [1,3,13,75,...].
Stirling transform of A005359(n-1) = [1,0,2,0,24,0,...] is a(n-1) = [1,1,3,13,75,...].
Stirling transform of A005212(n-1) = [0,1,0,6,0,120,0,...] is a(n-1) = [0,1,3,13,75,...].
(End)
Unreduced denominators in convergent to log(2) = lim_{n->infinity} n*a(n-1)/a(n).
a(n) is congruent to a(n+(p-1)p^(h-1)) (mod p^h) for n >= h (see Barsky).
Stirling-Bernoulli transform of 1/(1-x^2). - Paul Barry, Apr 20 2005
This is the sequence of moments of the probability distribution of the number of tails before the first head in a sequence of fair coin tosses. The sequence of cumulants of the same probability distribution is A000629. That sequence is twice the result of deletion of the first term of this sequence. - Michael Hardy (hardy(AT)math.umn.edu), May 01 2005
With p(n) = the number of integer partitions of n, p(i) = the number of parts of the i-th partition of n, d(i) = the number of different parts of the i-th partition of n, p(j,i) = the j-th part of the i-th partition of n, m(i,j) = multiplicity of the j-th part of the i-th partition of n, one has: a(n) = Sum_{i=1..p(n)} (n!/(Product_{j=1..p(i)} p(i,j)!)) * (p(i)!/(Product_{j=1..d(i)} m(i,j)!)). - Thomas Wieder, May 18 2005
The number of chains among subsets of [n]. The summed term in the new formula is the number of such chains of length k. - Micha Hofri (hofri(AT)wpi.edu), Jul 01 2006
Occurs also as first column of a matrix-inversion occurring in a sum-of-like-powers problem. Consider the problem for any fixed natural number m>2 of finding solutions to the equation Sum_{k=1..n} k^m = (k+1)^m. Erdős conjectured that there are no solutions for n, m > 2. Let D be the matrix of differences of D[m,n] := Sum_{k=1..n} k^m - (k+1)^m. Then the generating functions for the rows of this matrix D constitute a set of polynomials in n (for varying n along columns) and the m-th polynomial defining the m-th row. Let GF_D be the matrix of the coefficients of this set of polynomials. Then the present sequence is the (unsigned) first column of GF_D^-1. - Gottfried Helms, Apr 01 2007
Assuming A = log(2), D is d/dx and f(x) = x/(exp(x)-1), we have a(n) = (n!/2*A^(n+1)) Sum_{k=0..n} (A^k/k!) D^n f(-A) which gives Wilf's asymptotic value when n tends to infinity. Equivalently, D^n f(-a) = 2*( A*a(n) - 2*a(n-1) ). - Martin Kochanski (mjk(AT)cardbox.com), May 10 2007
List partition transform (see A133314) of (1,-1,-1,-1,...). - Tom Copeland, Oct 24 2007
First column of A154921. - Mats Granvik, Jan 17 2009
A slightly more transparent interpretation of a(n) is as the number of 'factor sequences' of N for the case in which N is a product of n distinct primes. A factor sequence of N of length k is of the form 1 = x(1), x(2), ..., x(k) = N, where {x(i)} is an increasing sequence such that x(i) divides x(i+1), i=1,2,...,k-1. For example, N=70 has the 13 factor sequences {1,70}, {1,2,70}, {1,5,70}, {1,7,70}, {1,10,70}, {1,14,70}, {1,35,70}, {1,2,10,70}, {1,2,14,70}, {1,5,10,70}, {1,5,35,70}, {1,7,14,70}, {1,7,35,70}. - Martin Griffiths, Mar 25 2009
Starting (1, 3, 13, 75, ...) = row sums of triangle A163204. - Gary W. Adamson, Jul 23 2009
Equals double inverse binomial transform of A007047: (1, 3, 11, 51, ...). - Gary W. Adamson, Aug 04 2009
If f(x) = Sum_{n>=0} c(n)*x^n converges for every x, then Sum_{n>=0} f(n*x)/2^(n+1) = Sum_{n>=0} c(n)*a(n)*x^n. Example: Sum_{n>=0} exp(n*x)/2^(n+1) = Sum_{n>=0} a(n)*x^n/n! = 1/(2-exp(x)) = e.g.f. - Miklos Kristof, Nov 02 2009
Hankel transform is A091804. - Paul Barry, Mar 30 2010
It appears that the prime numbers greater than 3 in this sequence (13, 541, 47293, ...) are of the form 4n+1. - Paul Muljadi, Jan 28 2011
The Fi1 and Fi2 triangle sums of A028246 are given by the terms of this sequence. For the definitions of these triangle sums, see A180662. - Johannes W. Meijer, Apr 20 2011
The modified generating function A(x) = 1/(2-exp(x))-1 = x + 3*x^2/2! + 13*x^3/3! + ... satisfies the autonomous differential equation A' = 1 + 3*A + 2*A^2 with initial condition A(0) = 0. Applying [Bergeron et al., Theorem 1] leads to two combinatorial interpretations for this sequence: (A) a(n) gives the number of plane-increasing 0-1-2 trees on n vertices, where vertices of outdegree 1 come in 3 colors and vertices of outdegree 2 come in 2 colors. (B) a(n) gives the number of non-plane-increasing 0-1-2 trees on n vertices, where vertices of outdegree 1 come in 3 colors and vertices of outdegree 2 come in 4 colors. Examples are given below. - Peter Bala, Aug 31 2011
Starting with offset 1 = the eigensequence of A074909 (the beheaded Pascal's triangle), and row sums of triangle A208744. - Gary W. Adamson, Mar 05 2012
a(n) = number of words of length n on the alphabet of positive integers for which the letters appearing in the word form an initial segment of the positive integers. Example: a(2) = 3 counts 11, 12, 21. The map "record position of block containing i, 1<=i<=n" is a bijection from lists of sets on [n] to these words. (The lists of sets on [2] are 12, 1/2, 2/1.) - David Callan, Jun 24 2013
This sequence was the subject of one of the earliest uses of the database. Don Knuth, who had a computer printout of the database prior to the publication of the 1973 Handbook, wrote to N. J. A. Sloane on May 18, 1970, saying: "I have just had my first real 'success' using your index of sequences, finding a sequence treated by Cayley that turns out to be identical to another (a priori quite different) sequence that came up in connection with computer sorting." A000670 is discussed in Exercise 3 of Section 5.3.1 of The Art of Computer Programming, Vol. 3, 1973. - N. J. A. Sloane, Aug 21 2014
Ramanujan gives a method of finding a continued fraction of the solution x of an equation 1 = x + a2*x^2 + ... and uses log(2) as the solution of 1 = x + x^2/2 + x^3/6 + ... as an example giving the sequence of simplified convergents as 0/1, 1/1, 2/3, 9/13, 52/75, 375/541, ... of which the sequence of denominators is this sequence, while A052882 is the numerators. - Michael Somos, Jun 19 2015
For n>=1, a(n) is the number of Dyck paths (A000108) with (i) n+1 peaks (UD's), (ii) no UUDD's, and (iii) at least one valley vertex at every nonnegative height less than the height of the path. For example, a(2)=3 counts UDUDUD (of height 1 with 2 valley vertices at height 0), UDUUDUDD, UUDUDDUD. These paths correspond, under the "glove" or "accordion" bijection, to the ordered trees counted by Cayley in the 1859 reference, after a harmless pruning of the "long branches to a leaf" in Cayley's trees. (Cayley left the reader to infer the trees he was talking about from examples for small n and perhaps from his proof.) - David Callan, Jun 23 2015
From David L. Harden, Apr 09 2017: (Start)
Fix a set X and define two distance functions d,D on X to be metrically equivalent when d(x_1,y_1) <= d(x_2,y_2) iff D(x_1,y_1) <= D(x_2,y_2) for all x_1, y_1, x_2, y_2 in X.
Now suppose that we fix a function f from unordered pairs of distinct elements of X to {1,...,n}. Then choose positive real numbers d_1 <= ... <= d_n such that d(x,y) = d_{f(x,y)}; the set of all possible choices of the d_i's makes this an n-parameter family of distance functions on X. (The simplest example of such a family occurs when n is a triangular number: When that happens, write n = (k 2). Then the set of all distance functions on X, when |X| = k, is such a family.) The number of such distance functions, up to metric equivalence, is a(n).
It is easy to see that an equivalence class of distance functions gives rise to a well-defined weak order on {d_1, ..., d_n}. To see that any weak order is realizable, choose distances from the set of integers {n-1, ..., 2n-2} so that the triangle inequality is automatically satisfied. (End)
a(n) is the number of rooted labeled forests on n nodes that avoid the patterns 213, 312, and 321. - Kassie Archer, Aug 30 2018
From A.H.M. Smeets, Nov 17 2018: (Start)
Also the number of semantic different assignments to n variables (x_1, ..., x_n) including simultaneous assignments. From the example given by Joerg Arndt (Mar 18 2014), this is easily seen by replacing
"{i}" by "x_i := expression_i(x_1, ..., x_n)",
"{i, j}" by "x_i, x_j := expression_i(x_1, .., x_n), expression_j(x_1, ..., x_n)", i.e., simultaneous assignment to two different variables (i <> j),
similar for simultaneous assignments to more variables, and
"<" by ";", i.e., the sequential constructor. These examples are directly related to "Number of ways n competitors can rank in a competition, allowing for the possibility of ties." in the first comment.
From this also the number of different mean definitions as obtained by iteration of n different mean functions on n initial values. Examples:
the AGM(x1,x2) = AGM(x2,x1) is represented by {arithmetic mean, geometric mean}, i.e., simultaneous assignment in any iteration step;
Archimedes's scheme (for Pi) is represented by {geometric mean} < {harmonic mean}, i.e., sequential assignment in any iteration step;
the geometric mean of two values can also be observed by {arithmetic mean, harmonic mean};
the AGHM (as defined in A319215) is represented by {arithmetic mean, geometric mean, harmonic mean}, i.e., simultaneous assignment, but there are 12 other semantic different ways to assign the values in an AGHM scheme.
By applying power means (also called Holder means) this can be extended to any value of n. (End)
Total number of faces of all dimensions in the permutohedron of order n. For example, the permutohedron of order 3 (a hexagon) has 6 vertices + 6 edges + 1 2-face = 13 faces, and the permutohedron of order 4 (a truncated octahedron) has 24 vertices + 36 edges + 14 2-faces + 1 3-face = 75 faces. A001003 is the analogous sequence for the associahedron. - Noam Zeilberger, Dec 08 2019
Number of odd multinomial coefficients N!/(a_1!*a_2!*...*a_k!). Here each a_i is positive, and Sum_{i} a_i = N (so 2^{N-1} multinomial coefficients in all), where N is any positive integer whose binary expansion has n 1's. - Richard Stanley, Apr 05 2022 (edited Oct 19 2022)
From Peter Bala, Jul 08 2022: (Start)
Conjecture: Let k be a positive integer. The sequence obtained by reducing a(n) modulo k is eventually periodic with the period dividing phi(k) = A000010(k). For example, modulo 16 we obtain the sequence [1, 1, 3, 13, 11, 13, 11, 13, 11, 13, ...], with an apparent period of 2 beginning at a(4). Cf. A354242.
More generally, we conjecture that the same property holds for integer sequences having an e.g.f. of the form G(exp(x) - 1), where G(x) is an integral power series. (End)
a(n) is the number of ways to form a permutation of [n] and then choose a subset of its descent set. - Geoffrey Critzer, Apr 29 2023
This is the Akiyama-Tanigawa transform of A000079, the powers of two. - Shel Kaphan, May 02 2024

Examples

			Let the points be labeled 1,2,3,...
a(2) = 3: 1<2, 2<1, 1=2.
a(3) = 13 from the 13 arrangements: 1<2<3, 1<3<2, 2<1<3, 2<3<1, 3<1<2, 3<2<1, 1=2<3 1=3<2, 2=3<1, 1<2=3, 2<1=3, 3<1=2, 1=2=3.
Three competitors can finish in 13 ways: 1,2,3; 1,3,2; 2,1,3; 2,3,1; 3,1,2; 3,2,1; 1,1,3; 2,2,1; 1,3,1; 2,1,2; 3,1,1; 1,2,2; 1,1,1.
a(3) = 13. The 13 plane increasing 0-1-2 trees on 3 vertices, where vertices of outdegree 1 come in 3 colors and vertices of outdegree 2 come in 2 colors, are:
........................................................
........1 (x3 colors).....1(x2 colors)....1(x2 colors)..
........|................/.\............./.\............
........2 (x3 colors)...2...3...........3...2...........
........|...............................................
........3...............................................
......====..............====............====............
.Totals 9......+..........2....+..........2....=..13....
........................................................
a(4) = 75. The 75 non-plane increasing 0-1-2 trees on 4 vertices, where vertices of outdegree 1 come in 3 colors and vertices of outdegree 2 come in 4 colors, are:
...............................................................
.....1 (x3).....1(x4).......1(x4).....1(x4)........1(x3).......
.....|........./.\........./.\......./.\...........|...........
.....2 (x3)...2...3.(x3)..3...2(x3).4...2(x3)......2(x4).......
.....|.............\...........\.........\......../.\..........
.....3.(x3).........4...........4.........3......3...4.........
.....|.........................................................
.....4.........................................................
....====......=====........====......====.........====.........
Tots 27....+....12......+...12....+...12.......+...12...=...75.
From _Joerg Arndt_, Mar 18 2014: (Start)
The a(3) = 13 strings on the alphabet {1,2,3} containing all letters up to the maximal value appearing and the corresponding ordered set partitions are:
01:  [ 1 1 1 ]     { 1, 2, 3 }
02:  [ 1 1 2 ]     { 1, 2 } < { 3 }
03:  [ 1 2 1 ]     { 1, 3 } < { 2 }
04:  [ 2 1 1 ]     { 2, 3 } < { 1 }
05:  [ 1 2 2 ]     { 1 } < { 2, 3 }
06:  [ 2 1 2 ]     { 2 } < { 1, 3 }
07:  [ 2 2 1 ]     { 3 } < { 1, 2 }
08:  [ 1 2 3 ]     { 1 } < { 2 } < { 3 }
09:  [ 1 3 2 ]     { 1 } < { 3 } < { 2 }
00:  [ 2 1 3 ]     { 2 } < { 1 } < { 3 }
11:  [ 2 3 1 ]     { 3 } < { 1 } < { 2 }
12:  [ 3 1 2 ]     { 2 } < { 3 } < { 1 }
13:  [ 3 2 1 ]     { 3 } < { 2 } < { 1 }
(End)
		

References

  • Mohammad K. Azarian, Geometric Series, Problem 329, Mathematics and Computer Education, Vol. 30, No. 1, Winter 1996, p. 101. Solution published in Vol. 31, No. 2, Spring 1997, pp. 196-197.
  • Norman Biggs, E. Keith Lloyd and Robin J. Wilson, Graph Theory 1736-1936, Oxford, 1976, p. 44 (P(x)).
  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 183 (see R_n).
  • Kenneth S. Brown, Buildings, Springer-Verlag, 1988.
  • Louis Comtet, Advanced Combinatorics, Reidel, 1974, p. 228.
  • Jean-Marie De Koninck, Ces nombres qui nous fascinent, Entry 13, pp 4, Ellipses, Paris 2008.
  • P. J. Freyd, On the size of Heyting semi-lattices, preprint, 2002.
  • Ian P. Goulden and David M. Jackson, Combinatorial Enumeration, John Wiley and Sons, N.Y., 1983.
  • Ronald L. Graham, Donald E. Knuth, and Oren Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 2nd Ed., 1994, exercise 7.44 (pp. 378, 571).
  • Silvia Heubach and Toufik Mansour, Combinatorics of Compositions and Words, CRC Press, 2010.
  • Donald E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, Vol. 3, 1973, Section 5.3.1, Problem 3.
  • M. Muresan, Generalized Fubini numbers, Stud. Cerc. Mat., Vol. 37, No. 1 (1985), pp. 70-76.
  • Paul Peart, Hankel determinants via Stieltjes matrices. Proceedings of the Thirty-first Southeastern International Conference on Combinatorics, Graph Theory and Computing (Boca Raton, FL, 2000). Congr. Numer. 144 (2000), 153-159.
  • S. Ramanujan, Notebooks, Tata Institute of Fundamental Research, Bombay 1957 Vol. 1, see page 19.
  • Ulrike Sattler, Decidable classes of formal power series with nice closure properties, Diplomarbeit im Fach Informatik, Univ. Erlangen - Nuernberg, Jul 27 1994.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Richard P. Stanley, Enumerative Combinatorics, Wadsworth, Vol. 1, 1986; see Example 3.15.10, p. 146.
  • Jack van der Elsen, Black and White Transformations, Shaker Publishing, Maastricht, 2005, p. 18.

Crossrefs

See A240763 for a list of the actual preferential arrangements themselves.
A000629, this sequence, A002050, A032109, A052856, A076726 are all more-or-less the same sequence. - N. J. A. Sloane, Jul 04 2012
Binomial transform of A052841. Inverse binomial transform of A000629.
Asymptotic to A034172.
Row r=1 of A094416. Row 0 of array in A226513. Row n=1 of A262809.
Main diagonal of: A135313, A261781, A276890, A327245, A327583, A327584.
Row sums of triangles A019538, A131689, A208744 and A276891.
A217389 and A239914 give partial sums.
Column k=1 of A326322.

Programs

  • Haskell
    a000670 n = a000670_list !! n
    a000670_list = 1 : f [1] (map tail $ tail a007318_tabl) where
       f xs (bs:bss) = y : f (y : xs) bss where y = sum $ zipWith (*) xs bs
    -- Reinhard Zumkeller, Jul 26 2014
    
  • Magma
    R:=PowerSeriesRing(Rationals(), 40);
    Coefficients(R!(Laplace( 1/(2-Exp(x)) ))); // G. C. Greubel, Jun 11 2024
  • Maple
    A000670 := proc(n) option remember; local k; if n <=1 then 1 else add(binomial(n,k)*A000670(n-k),k=1..n); fi; end;
    with(combstruct); SeqSetL := [S, {S=Sequence(U), U=Set(Z,card >= 1)},labeled]; seq(count(SeqSetL,size=j),j=1..12);
    with(combinat): a:=n->add(add((-1)^(k-i)*binomial(k, i)*i^n, i=0..n), k=0..n): seq(a(n), n=0..18); # Zerinvary Lajos, Jun 03 2007
    a := n -> add(combinat:-eulerian1(n,k)*2^k,k=0..n): # Peter Luschny, Jan 02 2015
    a := n -> (polylog(-n, 1/2)+`if`(n=0,1,0))/2: seq(round(evalf(a(n),32)), n=0..20); # Peter Luschny, Nov 03 2015
    # next Maple program:
    b:= proc(n, k) option remember;
         `if`(n=0, k!, k*b(n-1, k)+b(n-1, k+1))
        end:
    a:= n-> b(n, 0):
    seq(a(n), n=0..20);  # Alois P. Heinz, Aug 04 2021
  • Mathematica
    Table[(PolyLog[-z, 1/2] + KroneckerDelta[z])/2, {z, 0, 20}] (* Wouter Meeussen *)
    a[0] = 1; a[n_]:= a[n]= Sum[Binomial[n, k]*a[n-k], {k, 1, n}]; Table[a[n], {n, 0, 30}] (* Roger L. Bagula and Gary W. Adamson, Sep 13 2008 *)
    t = 30; Range[0, t]! CoefficientList[Series[1/(2 - Exp[x]), {x, 0, t}], x] (* Vincenzo Librandi, Mar 16 2014 *)
    a[ n_] := If[ n < 0, 0, n! SeriesCoefficient[ 1 / (2 - Exp@x), {x, 0, n}]]; (* Michael Somos, Jun 19 2015 *)
    Table[Sum[k^n/2^(k+1),{k,0,Infinity}],{n,0,20}] (* Vaclav Kotesovec, Jun 26 2015 *)
    Table[HurwitzLerchPhi[1/2, -n, 0]/2, {n, 0, 20}] (* Jean-François Alcover, Jan 31 2016 *)
    Fubini[n_, r_] := Sum[k!*Sum[(-1)^(i+k+r)*((i+r)^(n-r)/(i!*(k-i-r)!)), {i, 0, k-r}], {k, r, n}]; Fubini[0, 1] = 1; Table[Fubini[n, 1], {n, 0, 20}] (* Jean-François Alcover, Mar 31 2016 *)
    Eulerian1[0, 0] = 1; Eulerian1[n_, k_] := Sum[(-1)^j (k-j+1)^n Binomial[n+1, j], {j, 0, k+1}]; Table[Sum[Eulerian1[n, k] 2^k, {k, 0, n}], {n, 0, 20}] (* Jean-François Alcover, Jul 13 2019, after Peter Luschny *)
    Prepend[Table[-(-1)^k HurwitzLerchPhi[2, -k, 0]/2, {k, 1, 50}], 1] (* Federico Provvedi,Sep 05 2020 *)
    Table[Sum[k!*StirlingS2[n,k], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Nov 22 2020 *)
  • Maxima
    makelist(sum(stirling2(n,k)*k!,k,0,n),n,0,12); /* Emanuele Munarini, Jul 07 2011 */
    
  • Maxima
    a[0]:1$ a[n]:=sum(binomial(n,k)*a[n-k],k,1,n)$ A000670(n):=a[n]$ makelist(A000670(n),n,0,30); /* Martin Ettl, Nov 05 2012 */
    
  • PARI
    {a(n) = if( n<0, 0, n! * polcoeff( subst( 1 / (1 - y), y, exp(x + x*O(x^n)) - 1), n))}; /* Michael Somos, Mar 04 2004 */
    
  • PARI
    Vec(serlaplace(1/(2-exp('x+O('x^66))))) /* Joerg Arndt, Jul 10 2011 */
    
  • PARI
    {a(n)=polcoeff(sum(m=0,n,m!*x^m/prod(k=1,m,1-k*x+x*O(x^n))),n)} /* Paul D. Hanna, Jul 20 2011 */
    
  • PARI
    {a(n) = if( n<1, n==0, sum(k=1, n, binomial(n, k) * a(n-k)))}; /* Michael Somos, Jul 16 2017 */
    
  • Python
    from math import factorial
    from sympy.functions.combinatorial.numbers import stirling
    def A000670(n): return sum(factorial(k)*stirling(n,k) for k in range(n+1)) # Chai Wah Wu, Nov 08 2022
    
  • Sage
    @CachedFunction
    def A000670(n) : return 1 if n == 0 else add(A000670(k)*binomial(n,k) for k in range(n))
    [A000670(n) for n in (0..20)] # Peter Luschny, Jul 14 2012
    

Formula

a(n) = Sum_{k=0..n} k! * StirlingS2(n,k) (whereas the Bell numbers A000110(n) = Sum_{k=0..n} StirlingS2(n,k)).
E.g.f.: 1/(2-exp(x)).
a(n) = Sum_{k=1..n} binomial(n, k)*a(n-k), a(0) = 1.
The e.g.f. y(x) satisfies y' = 2*y^2 - y.
a(n) = A052856(n) - 1, if n>0.
a(n) = A052882(n)/n, if n>0.
a(n) = A076726(n)/2.
a(n) is asymptotic to (1/2)*n!*log_2(e)^(n+1), where log_2(e) = 1.442695... [Barthelemy80, Wilf90].
For n >= 1, a(n) = (n!/2) * Sum_{k=-infinity..infinity} of (log(2) + 2 Pi i k)^(-n-1). - Dean Hickerson
a(n) = ((x*d/dx)^n)(1/(2-x)) evaluated at x=1. - Karol A. Penson, Sep 24 2001
For n>=1, a(n) = Sum_{k>=1} (k-1)^n/2^k = A000629(n)/2. - Benoit Cloitre, Sep 08 2002
Value of the n-th Eulerian polynomial (cf. A008292) at x=2. - Vladeta Jovovic, Sep 26 2003
First Eulerian transform of the powers of 2 [A000079]. See A000142 for definition of FET. - Ross La Haye, Feb 14 2005
a(n) = Sum_{k=0..n} (-1)^k*k!*Stirling2(n+1, k+1)*(1+(-1)^k)/2. - Paul Barry, Apr 20 2005
a(n) + a(n+1) = 2*A005649(n). - Philippe Deléham, May 16 2005 - Thomas Wieder, May 18 2005
Equals inverse binomial transform of A000629. - Gary W. Adamson, May 30 2005
a(n) = Sum_{k=0..n} k!*( Stirling2(n+2, k+2) - Stirling2(n+1, k+2) ). - Micha Hofri (hofri(AT)wpi.edu), Jul 01 2006
Recurrence: 2*a(n) = (a+1)^n where superscripts are converted to subscripts after binomial expansion - reminiscent of Bernoulli numbers' B_n = (B+1)^n. - Martin Kochanski (mjk(AT)cardbox.com), May 10 2007
a(n) = (-1)^n * n! * Laguerre(n,P((.),2)), umbrally, where P(j,t) are the polynomials in A131758. - Tom Copeland, Sep 27 2007
Formula in terms of the hypergeometric function, in Maple notation: a(n) = hypergeom([2,2...2],[1,1...1],1/2)/4, n=1,2..., where in the hypergeometric function there are n upper parameters all equal to 2 and n-1 lower parameters all equal to 1 and the argument is equal to 1/2. Example: a(4) = evalf(hypergeom([2,2,2,2],[1,1,1],1/2)/4) = 75. - Karol A. Penson, Oct 04 2007
a(n) = Sum_{k=0..n} A131689(n,k). - Philippe Deléham, Nov 03 2008
From Peter Bala, Jul 01 2009: (Start)
Analogy with the Bernoulli numbers.
We enlarge upon the above comment of M. Kochanski.
The Bernoulli polynomials B_n(x), n = 0,1,..., are given by the formula
(1)... B_n(x) := Sum_{k=0..n} binomial(n,k)*B(k)*x^(n-k),
where B(n) denotes the sequence of Bernoulli numbers B(0) = 1,
B(1) = -1/2, B(2) = 1/6, B(3) = 0, ....
By analogy, we associate with the present sequence an Appell sequence of polynomials {P_n(x)} n >= 0 defined by
(2)... P_n(x) := Sum_{k=0..n} binomial(n,k)*a(k)*x^(n-k).
These polynomials have similar properties to the Bernoulli polynomials.
The first few values are P_0(x) = 1, P_1(x) = x + 1,
P_2(x) = x^2 + 2*x + 3, P_3(x) = x^3 + 3*x^2 + 9*x + 13 and
P_4(x) = x^4 + 4*x^3 + 18*x^2 + 52*x + 75. See A154921 for the triangle of coefficients of these polynomials.
The e.g.f. for this polynomial sequence is
(3)... exp(x*t)/(2 - exp(t)) = 1 + (x + 1)*t + (x^2 + 2*x + 3)*t^2/2! + ....
The polynomials satisfy the difference equation
(4)... 2*P_n(x - 1) - P_n(x) = (x - 1)^n,
and so may be used to evaluate the weighted sums of powers of integers
(1/2)*1^m + (1/2)^2*2^m + (1/2)^3*3^m + ... + (1/2)^(n-1)*(n-1)^m
via the formula
(5)... Sum_{k=1..n-1} (1/2)^k*k^m = 2*P_m(0) - (1/2)^(n-1)*P_m(n),
analogous to the evaluation of the sums 1^m + 2^m + ... + (n-1)^m in terms of Bernoulli polynomials.
This last result can be generalized to
(6)... Sum_{k=1..n-1} (1/2)^k*(k+x)^m = 2*P_m(x)-(1/2)^(n-1)*P_m(x+n).
For more properties of the polynomials P_n(x), refer to A154921.
For further information on weighted sums of powers of integers and the associated polynomial sequences, see A162312.
The present sequence also occurs in the evaluation of another sum of powers of integers. Define
(7)... S_m(n) := Sum_{k=1..n-1} (1/2)^k*((n-k)*k)^m, m = 1,2,....
Then
(8)... S_m(n) = (-1)^m *[2*Q_m(-n) - (1/2)^(n-1)*Q_m(n)],
where Q_m(x) are polynomials in x given by
(9)... Q_m(x) = Sum_{k=0..m} a(m+k)*binomial(m,k)*x^(m-k).
The first few values are Q_1(x) = x + 3, Q_2(x) = 3*x^2 + 26*x + 75
and Q_3(x) = 13*x^3 + 225*x^2 + 1623*x + 4683.
For example, m = 2 gives
(10)... S_2(n) := Sum_{k=1..n-1} (1/2)^k*((n-k)*k)^2
= 2*(3*n^2 - 26*n + 75) - (1/2)^(n-1)*(3*n^2 + 26*n + 75).
(End)
G.f.: 1/(1-x/(1-2*x/(1-2*x/(1-4*x/(1-3*x/(1-6*x/(1-4*x/(1-8*x/(1-5*x/(1-10*x/(1-6*x/(1-... (continued fraction); coefficients of continued fraction are given by floor((n+2)/2)*(3-(-1)^n)/2 (A029578(n+2)). - Paul Barry, Mar 30 2010
G.f.: 1/(1-x-2*x^2/(1-4*x-8*x^2/(1-7*x-18*x^2/(1-10*x-32*x^2/(1../(1-(3*n+1)*x-2*(n+1)^2*x^2/(1-... (continued fraction). - Paul Barry, Jun 17 2010
G.f.: A(x) = Sum_{n>=0} n!*x^n / Product_{k=1..n} (1-k*x). - Paul D. Hanna, Jul 20 2011
a(n) = A074206(q_1*q_2*...*q_n), where {q_i} are distinct primes. - Vladimir Shevelev, Aug 05 2011
The adjusted e.g.f. A(x) := 1/(2-exp(x))-1, has inverse function A(x)^-1 = Integral_{t=0..x} 1/((1+t)*(1+2*t)). Applying [Dominici, Theorem 4.1] to invert the integral yields a formula for a(n): Let f(x) = (1+x)*(1+2*x). Let D be the operator f(x)*d/dx. Then a(n) = D^(n-1)(f(x)) evaluated at x = 0. Compare with A050351. - Peter Bala, Aug 31 2011
a(n) = D^n*(1/(1-x)) evaluated at x = 0, where D is the operator (1+x)*d/dx. Cf. A052801. - Peter Bala, Nov 25 2011
From Sergei N. Gladkovskii, from Oct 2011 to Oct 2013: (Start)
Continued fractions:
G.f.: 1+x/(1-x+2*x*(x-1)/(1+3*x*(2*x-1)/(1+4*x*(3*x-1)/(1+5*x*(4*x-1)/(1+... or 1+x/(U(0)-x), U(k) = 1+(k+2)*(k*x+x-1)/U(k+1).
E.g.f.: 1 + x/(G(0)-2*x) where G(k) = x + k + 1 - x*(k+1)/G(k+1).
E.g.f. (2 - 2*x)*(1 - 2*x^3/(8*x^2 - 4*x + (x^2 - 4*x + 2)*G(0)))/(x^2 - 4*x + 2) where G(k) = k^2 + k*(x+4) + 2*x + 3 - x*(k+1)*(k+3)^2 /G(k+1).
G.f.: 1 + x/G(0) where G(k) = 1 - 3*x*(k+1) - 2*x^2*(k+1)*(k+2)/G(k+1).
G.f.: 1/G(0) where G(k) = 1 - x*(k+1)/( 1 - 2*x*(k+1)/G(k+1) ).
G.f.: 1 + x/Q(0), where Q(k) = 1 - 3*x*(2*k+1) - 2*x^2*(2*k+1)*(2*k+2)/( 1 - 3*x*(2*k+2) - 2*x^2*(2*k+2)*(2*k+3)/Q(k+1) ).
G.f.: T(0)/(1-x), where T(k) = 1 - 2*x^2*(k+1)^2/( 2*x^2*(k+1)^2 - (1-x-3*x*k)*(1-4*x-3*x*k)/T(k+1) ). (End)
a(n) is always odd. For odd prime p and n >= 1, a((p-1)*n) = 0 (mod p). - Peter Bala, Sep 18 2013
a(n) = log(2)* Integral_{x>=0} floor(x)^n * 2^(-x) dx. - Peter Bala, Feb 06 2015
For n > 0, a(n) = Re(polygamma(n, i*log(2)/(2*Pi))/(2*Pi*i)^(n+1)) - n!/(2*log(2)^(n+1)). - Vladimir Reshetnikov, Oct 15 2015
a(n) = Sum_{k=1..n} (k*b2(k-1)*(k)!*Stirling2(n, k)), n>0, a(0)=1, where b2(n) is the n-th Bernoulli number of the second kind. - Vladimir Kruchinin, Nov 21 2016
Conjecture: a(n) = Sum_{k=0..2^(n-1)-1} A284005(k) for n > 0 with a(0) = 1. - Mikhail Kurkov, Jul 08 2018
a(n) = A074206(k) for squarefree k with n prime factors. In particular a(n) = A074206(A002110(n)). - Amiram Eldar, May 13 2019
For n > 0, a(n) = -(-1)^n / 2 * PHI(2, -n, 0), where PHI(z, s, a) is the Lerch zeta function. - Federico Provvedi, Sep 05 2020
a(n) = Sum_{s in S_n} Product_{i=1..n} binomial(i,s(i)-1), where s ranges over the set S_n of permutations of [n]. - Jose A. Rodriguez, Feb 02 2021
Sum_{n>=0} 1/a(n) = 2.425674839121428857970063350500499393706641093287018840857857170864211946122664... - Vaclav Kotesovec, Jun 17 2021
From Jacob Sprittulla, Oct 05 2021: (Start)
The following identities hold for sums over Stirling numbers of the second kind with even or odd second argument:
a(n) = 2 * Sum_{k=0..floor(n/2)} ((2k)! * Stirling2(n,2*k) ) - (-1)^n = 2*A052841-(-1)^n
a(n) = 2 * Sum_{k=0..floor(n/2)} ((2k+1)!* Stirling2(n,2*k+1))+ (-1)^n = 2*A089677+(-1)^n
a(n) = Sum_{k=1..floor((n+1)/2)} ((2k-1)!* Stirling2(n+1,2*k))
a(n) = Sum_{k=0..floor((n+1)/2)} ((2k)! * Stirling2(n+1,2*k+1)). (End)

A008292 Triangle of Eulerian numbers T(n,k) (n >= 1, 1 <= k <= n) read by rows.

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 11, 11, 1, 1, 26, 66, 26, 1, 1, 57, 302, 302, 57, 1, 1, 120, 1191, 2416, 1191, 120, 1, 1, 247, 4293, 15619, 15619, 4293, 247, 1, 1, 502, 14608, 88234, 156190, 88234, 14608, 502, 1, 1, 1013, 47840, 455192, 1310354, 1310354, 455192, 47840, 1013, 1
Offset: 1

Views

Author

N. J. A. Sloane, Mar 15 1996

Keywords

Comments

The indexing used here follows that given in the classic books by Riordan and Comtet. For two other versions see A173018 and A123125. - N. J. A. Sloane, Nov 21 2010
Coefficients of Eulerian polynomials. Number of permutations of n objects with k-1 rises. Number of increasing rooted trees with n+1 nodes and k leaves.
T(n,k) = number of permutations of [n] with k runs. T(n,k) = number of permutations of [n] requiring k readings (see the Knuth reference). T(n,k) = number of permutations of [n] having k distinct entries in its inversion table. - Emeric Deutsch, Jun 09 2004
T(n,k) = number of ways to write the Coxeter element s_{e1}s_{e1-e2}s_{e2-e3}s_{e3-e4}...s_{e_{n-1}-e_n} of the reflection group of type B_n, using s_{e_k} and as few reflections of the form s_{e_i+e_j}, where i = 1, 2, ..., n and j is not equal to i, as possible. - Pramook Khungurn (pramook(AT)mit.edu), Jul 07 2004
Subtriangle for k>=1 and n>=1 of triangle A123125. - Philippe Deléham, Oct 22 2006
T(n,k)/n! also represents the n-dimensional volume of the portion of the n-dimensional hypercube cut by the (n-1)-dimensional hyperplanes x_1 + x_2 + ... x_n = k, x_1 + x_2 + ... x_n = k-1; or, equivalently, it represents the probability that the sum of n independent random variables with uniform distribution between 0 and 1 is between k-1 and k. - Stefano Zunino, Oct 25 2006
[E(.,t)/(1-t)]^n = n!*Lag[n,-P(.,t)/(1-t)] and [-P(.,t)/(1-t)]^n = n!*Lag[n, E(.,t)/(1-t)] umbrally comprise a combinatorial Laguerre transform pair, where E(n,t) are the Eulerian polynomials and P(n,t) are the polynomials in A131758. - Tom Copeland, Sep 30 2007
From Tom Copeland, Oct 07 2008: (Start)
G(x,t) = 1/(1 + (1-exp(x*t))/t) = 1 + 1*x + (2+t)*x^2/2! + (6+6*t+t^2)*x^3/3! + ... gives row polynomials for A090582, the reverse f-polynomials for the permutohedra (see A019538).
G(x,t-1) = 1 + 1*x + (1+t)*x^2/2! + (1+4*t+t^2)*x^3/3! + ... gives row polynomials for A008292, the h-polynomials for permutohedra (Postnikov et al.).
G((t+1)*x, -1/(t+1)) = 1 + (1+t)*x + (1+3*t+2*t^2)*x^2/2! + ... gives row polynomials for A028246.
(End)
A subexceedant function f on [n] is a map f:[n] -> [n] such that 1 <= f(i) <= i for all i, 1 <= i <= n. T(n,k) equals the number of subexceedant functions f of [n] such that the image of f has cardinality k [Mantaci & Rakotondrajao]. Example T(3,2) = 4: if we identify a subexceedant function f with the word f(1)f(2)...f(n) then the subexceedant functions on [3] are 111, 112, 113, 121, 122 and 123 and four of these functions have an image set of cardinality 2. - Peter Bala, Oct 21 2008
Further to the comments of Tom Copeland above, the n-th row of this triangle is the h-vector of the simplicial complex dual to a permutohedron of type A_(n-1). The corresponding f-vectors are the rows of A019538. For example, 1 + 4*x + x^2 = y^2 + 6*y + 6 and 1 + 11*x + 11*x^2 + x^3 = y^3 + 14*y^2 + 36*y + 24, where x = y + 1, give [1,6,6] and [1,14,36,24] as the third and fourth rows of A019538. The Hilbert transform of this triangle (see A145905 for the definition) is A047969. See A060187 for the triangle of Eulerian numbers of type B (the h-vectors of the simplicial complexes dual to permutohedra of type B). See A066094 for the array of h-vectors of type D. For tables of restricted Eulerian numbers see A144696 - A144699. - Peter Bala, Oct 26 2008
For a natural refinement of A008292 with connections to compositional inversion and iterated derivatives, see A145271. - Tom Copeland, Nov 06 2008
The polynomials E(z,n) = numerator(Sum_{k>=1} (-1)^(n+1)*k^n*z^(k-1)) for n >=1 lead directly to the triangle of Eulerian numbers. - Johannes W. Meijer, May 24 2009
From Walther Janous (walther.janous(AT)tirol.com), Nov 01 2009: (Start)
The (Eulerian) polynomials e(n,x) = Sum_{k=0..n-1} T(n,k+1)*x^k turn out to be also the numerators of the closed-form expressions of the infinite sums:
S(p,x) = Sum_{j>=0} (j+1)^p*x^j, that is
S(p,x) = e(p,x)/(1-x)^(p+1), whenever |x| < 1 and p is a positive integer.
(Note the inconsistent use of T(n,k) in the section listing the formula section. I adhere tacitly to the first one.) (End)
If n is an odd prime, then all numbers of the (n-2)-th and (n-1)-th rows are in the progression k*n+1. - Vladimir Shevelev, Jul 01 2011
The Eulerian triangle is an element of the formula for the r-th successive summation of Sum_{k=1..n} k^j which appears to be Sum_{k=1..n} T(j,k-1) * binomial(j-k+n+r, j+r). - Gary Detlefs, Nov 11 2011
Li and Wong show that T(n,k) counts the combinatorially inequivalent star polygons with n+1 vertices and sum of angles (2*k-n-1)*Pi. An equivalent formulation is: define the total sign change S(p) of a permutation p in the symmetric group S_n to be equal to Sum_{i=1..n} sign(p(i)-p(i+1)), where we take p(n+1) = p(1). T(n,k) gives the number of permutations q in S_(n+1) with q(1) = 1 and S(q) = 2*k-n-1. For example, T(3,2) = 4 since in S_4 the permutations (1243), (1324), (1342) and (1423) have total sign change 0. - Peter Bala, Dec 27 2011
Xiong, Hall and Tsao refer to Riordan and mention that a traditional Eulerian number A(n,k) is the number of permutations of (1,2...n) with k weak exceedances. - Susanne Wienand, Aug 25 2014
Connections to algebraic geometry/topology and characteristic classes are discussed in the Buchstaber and Bunkova, the Copeland, the Hirzebruch, the Lenart and Zainoulline, the Losev and Manin, and the Sheppeard links; to the Grassmannian, in the Copeland, the Farber and Postnikov, the Sheppeard, and the Williams links; and to compositional inversion and differential operators, in the Copeland and the Parker links. - Tom Copeland, Oct 20 2015
The bivariate e.g.f. noted in the formulas is related to multiplying edges in certain graphs discussed in the Aluffi-Marcolli link. See p. 42. - Tom Copeland, Dec 18 2016
Distribution of left children in treeshelves is given by a shift of the Eulerian numbers. Treeshelves are ordered binary (0-1-2) increasing trees where every child is connected to its parent by a left or a right link. See A278677, A278678 or A278679 for more definitions and examples. - Sergey Kirgizov, Dec 24 2016
The row polynomial P(n, x) = Sum_{k=1..n} T(n, k)*x^k appears in the numerator of the o.g.f. G(n, x) = Sum_{m>=0} S(n, m)*x^m with S(n, m) = Sum_{j=0..m} j^n for n >= 1 as G(n, x) = Sum_{k=1..n} P(n, x)/(1 - x)^(n+2) for n >= 0 (with 0^0=1). See also triangle A131689 with a Mar 31 2017 comment for a rewritten form. For the e.g.f see A028246 with a Mar 13 2017 comment. - Wolfdieter Lang, Mar 31 2017
For relations to Ehrhart polynomials, volumes of polytopes, polylogarithms, the Todd operator, and other special functions, polynomials, and sequences, see A131758 and the references therein. - Tom Copeland, Jun 20 2017
For relations to values of the Riemann zeta function at integral arguments, see A131758 and the Dupont reference. - Tom Copeland, Mar 19 2018
Normalized volumes of the hypersimplices, attributed to Laplace. (Cf. the De Loera et al. reference, p. 327.) - Tom Copeland, Jun 25 2018

Examples

			The triangle T(n, k) begins:
n\k 1    2     3      4       5       6      7     8    9 10 ...
1:  1
2:  1    1
3:  1    4     1
4:  1   11    11      1
5:  1   26    66     26       1
6:  1   57   302    302      57       1
7:  1  120  1191   2416    1191     120      1
8:  1  247  4293  15619   15619    4293    247     1
9:  1  502 14608  88234  156190   88234  14608   502    1
10: 1 1013 47840 455192 1310354 1310354 455192 47840 1013  1
... Reformatted. - _Wolfdieter Lang_, Feb 14 2015
-----------------------------------------------------------------
E.g.f. = (y) * x^1 / 1! + (y + y^2) * x^2 / 2! + (y + 4*y^2 + y^3) * x^3 / 3! + ... - _Michael Somos_, Mar 17 2011
Let n=7. Then the following 2*7+1=15 consecutive terms are 1(mod 7): a(15+i), i=0..14. - _Vladimir Shevelev_, Jul 01 2011
Row 3: The plane increasing 0-1-2 trees on 3 vertices (with the number of colored vertices shown to the right of a vertex) are
.
.   1o (1+t)         1o t         1o t
.   |                / \          / \
.   |               /   \        /   \
.   2o (1+t)      2o     3o    3o    2o
.   |
.   |
.   3o
.
The total number of trees is (1+t)^2 + t + t = 1 + 4*t + t^2.
		

References

  • Mohammad K. Azarian, Geometric Series, Problem 329, Mathematics and Computer Education, Vol. 30, No. 1, Winter 1996, p. 101. Solution published in Vol. 31, No. 2, Spring 1997, pp. 196-197.
  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 106.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 243.
  • F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 260.
  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 254; 2nd. ed., p. 268.[Worpitzky's identity (6.37)]
  • D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, 1998, Vol. 3, p. 47 (exercise 5.1.4 Nr. 20) and p. 605 (solution).
  • Meng Li and Ron Goldman. "Limits of sums for binomial and Eulerian numbers and their associated distributions." Discrete Mathematics 343.7 (2020): 111870.
  • Anthony Mendes and Jeffrey Remmel, Generating functions from symmetric functions, Preliminary version of book, available from Jeffrey Remmel's home page http://math.ucsd.edu/~remmel/
  • K. Mittelstaedt, A stochastic approach to Eulerian numbers, Amer. Math. Mnthly, 127:7 (2020), 618-628.
  • T. K. Petersen, Eulerian Numbers, Birkhauser, 2015.
  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 215.
  • R. Sedgewick and P. Flajolet, An Introduction to the Analysis of Algorithms, Addison-Wesley, Reading, MA, 1996.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Figure M3416, Academic Press, 1995.
  • H. S. Wall, Analytic Theory of Continued Fractions, Chelsea, 1973, see p. 208.
  • D. B. West, Combinatorial Mathematics, Cambridge, 2021, p. 101.

Crossrefs

Programs

  • GAP
    Flat(List([1..10],n->List([1..n],k->Sum([0..k],j->(-1)^j*(k-j)^n*Binomial(n+1,j))))); # Muniru A Asiru, Jun 29 2018
    
  • Haskell
    import Data.List (genericLength)
    a008292 n k = a008292_tabl !! (n-1) !! (k-1)
    a008292_row n = a008292_tabl !! (n-1)
    a008292_tabl = iterate f [1] where
       f xs = zipWith (+)
         (zipWith (*) ([0] ++ xs) (reverse ks)) (zipWith (*) (xs ++ [0]) ks)
         where ks = [1 .. 1 + genericLength xs]
    -- Reinhard Zumkeller, May 07 2013
    
  • Magma
    Eulerian:= func< n,k | (&+[(-1)^j*Binomial(n+1,j)*(k-j+1)^n: j in [0..k+1]]) >; [[Eulerian(n,k): k in [0..n-1]]: n in [1..10]]; // G. C. Greubel, Apr 15 2019
  • Maple
    A008292 := proc(n,k) option remember; if k < 1 or k > n then 0; elif k = 1 or k = n then 1; else k*procname(n-1,k)+(n-k+1)*procname(n-1,k-1) ; end if; end proc:
  • Mathematica
    t[n_, k_] = Sum[(-1)^j*(k-j)^n*Binomial[n+1, j], {j, 0, k}];
    Flatten[Table[t[n, k], {n, 1, 10}, {k, 1, n}]] (* Jean-François Alcover, May 31 2011, after Michael Somos *)
    Flatten[Table[CoefficientList[(1-x)^(k+1)*PolyLog[-k, x]/x, x], {k, 1, 10}]] (* Vaclav Kotesovec, Aug 27 2015 *)
    Table[Tally[
       Count[#, x_ /; x > 0] & /@ (Differences /@
          Permutations[Range[n]])][[;; , 2]], {n, 10}] (* Li Han, Oct 11 2020 *)
  • PARI
    {T(n, k) = if( k<1 || k>n, 0, if( n==1, 1, k * T(n-1, k) + (n-k+1) * T(n-1, k-1)))}; /* Michael Somos, Jul 19 1999 */
    
  • PARI
    {T(n, k) = sum( j=0, k, (-1)^j * (k-j)^n * binomial( n+1, j))}; /* Michael Somos, Jul 19 1999 */
    
  • PARI
    {A(n,c)=c^(n+c-1)+sum(i=1,c-1,(-1)^i/i!*(c-i)^(n+c-1)*prod(j=1,i,n+c+1-j))}
    
  • Python
    from sympy import binomial
    def T(n, k): return sum([(-1)**j*(k - j)**n*binomial(n + 1, j) for j in range(k + 1)])
    for n in range(1, 11): print([T(n, k) for k in range(1, n + 1)]) # Indranil Ghosh, Nov 08 2017
    
  • R
    T <- function(n, k) {
      S <- numeric()
      for (j in 0:k) S <- c(S, (-1)^j*(k-j)^n*choose(n+1, j))
      return(sum(S))
    }
    for (n in 1:10){
      for (k in 1:n) print(T(n,k))
    } # Indranil Ghosh, Nov 08 2017
    
  • Sage
    [[sum((-1)^j*binomial(n+1, j)*(k-j)^n for j in (0..k)) for k in (1..n)] for n in (1..12)] # G. C. Greubel, Feb 23 2019
    

Formula

T(n, k) = k * T(n-1, k) + (n-k+1) * T(n-1, k-1), T(1, 1) = 1.
T(n, k) = Sum_{j=0..k} (-1)^j * (k-j)^n * binomial(n+1, j).
Row sums = n! = A000142(n) unless n=0. - Michael Somos, Mar 17 2011
E.g.f. A(x, q) = Sum_{n>0} (Sum_{k=1..n} T(n, k) * q^k) * x^n / n! = q * ( e^(q*x) - e^x ) / ( q*e^x - e^(q*x) ) satisfies dA / dx = (A + 1) * (A + q). - Michael Somos, Mar 17 2011
For a column listing, n-th term: T(c, n) = c^(n+c-1) + Sum_{i=1..c-1} (-1)^i/i!*(c-i)^(n+c-1)*Product_{j=1..i} (n+c+1-j). - Randall L Rathbun, Jan 23 2002
From John Robertson (jpr2718(AT)aol.com), Sep 02 2002: (Start)
Four characterizations of Eulerian numbers T(i, n):
1. T(0, n)=1 for n>=1, T(i, 1)=0 for i>=1, T(i, n) = (n-i)T(i-1, n-1) + (i+1)T(i, n-1).
2. T(i, n) = Sum_{j=0..i} (-1)^j*binomial(n+1,j)*(i-j+1)^n for n>=1, i>=0.
3. Let C_n be the unit cube in R^n with vertices (e_1, e_2, ..., e_n) where each e_i is 0 or 1 and all 2^n combinations are used. Then T(i, n)/n! is the volume of C_n between the hyperplanes x_1 + x_2 + ... + x_n = i and x_1 + x_2 + ... + x_n = i+1. Hence T(i, n)/n! is the probability that i <= X_1 + X_2 + ... + X_n < i+1 where the X_j are independent uniform [0, 1] distributions. - See Ehrenborg & Readdy reference.
4. Let f(i, n) = T(i, n)/n!. The f(i, n) are the unique coefficients so that (1/(r-1)^(n+1)) Sum_{i=0..n-1} f(i, n) r^{i+1} = Sum_{j>=0} (j^n)/(r^j) whenever n>=1 and abs(r)>1. (End)
O.g.f. for n-th row: (1-x)^(n+1)*polylog(-n, x)/x. - Vladeta Jovovic, Sep 02 2002
Triangle T(n, k), n>0 and k>0, read by rows; given by [0, 1, 0, 2, 0, 3, 0, 4, 0, 5, 0, 6, ...] DELTA [1, 0, 2, 0, 3, 0, 4, 0, 5, 0, 6, ...] (positive integers interspersed with 0's) where DELTA is Deléham's operator defined in A084938.
Sum_{k=1..n} T(n, k)*2^k = A000629(n). - Philippe Deléham, Jun 05 2004
From Tom Copeland, Oct 10 2007: (Start)
Bell_n(x) = Sum_{j=0..n} S2(n,j) * x^j = Sum_{j=0..n} E(n,j) * Lag(n,-x, j-n) = Sum_{j=0..n} (E(n,j)/n!) * (n!*Lag(n,-x, j-n)) = Sum_{j=0..n} E(n,j) * binomial(Bell.(x)+j, n) umbrally where Bell_n(x) are the Bell / Touchard / exponential polynomials; S2(n,j), the Stirling numbers of the second kind; E(n,j), the Eulerian numbers; and Lag(n,x,m), the associated Laguerre polynomials of order m.
For x = 0, the equation gives Sum_{j=0..n} E(n,j) * binomial(j,n) = 1 for n=0 and 0 for all other n. By substituting the umbral compositional inverse of the Bell polynomials, the lower factorial n!*binomial(y,n), for x in the equation, the Worpitzky identity is obtained; y^n = Sum_{j=0..n} E(n,j) * binomial(y+j,n).
Note that E(n,j)/n! = E(n,j)/(Sum_{k=0..n} E(n,k)). Also (n!*Lag(n, -1, j-n)) is A086885 with a simple combinatorial interpretation in terms of seating arrangements, giving a combinatorial interpretation to the equation for x=1; n!*Bell_n(1) = n!*Sum_{j=0..n} S2(n,j) = Sum_{j=0..n} E(n,j) * (n!*Lag(n, -1, j-n)).
(Appended Sep 16 2020) For connections to the Bernoulli numbers, extensions, proofs, and a clear presentation of the number arrays involved in the identities above, see my post Reciprocity and Umbral Witchcraft. (End)
From the relations between the h- and f-polynomials of permutohedra and reciprocals of e.g.f.s described in A049019: (t-1)((t-1)d/dx)^n 1/(t-exp(x)) evaluated at x=0 gives the n-th Eulerian row polynomial in t and the n-th row polynomial in (t-1) of A019538 and A090582. From the Comtet and Copeland references in A139605: ((t+exp(x)-1)d/dx)^(n+1) x gives pairs of the Eulerian polynomials in t as the coefficients of x^0 and x^1 in its Taylor series expansion in x. - Tom Copeland, Oct 05 2008
G.f: 1/(1-x/(1-x*y/1-2*x/(1-2*x*y/(1-3*x/(1-3*x*y/(1-... (continued fraction). - Paul Barry, Mar 24 2010
If n is odd prime, then the following consecutive 2*n+1 terms are 1 modulo n: a((n-1)*(n-2)/2+i), i=0..2*n. This chain of terms is maximal in the sense that neither the previous term nor the following one are 1 modulo n. - _Vladimir Shevelev, Jul 01 2011
From Peter Bala, Sep 29 2011: (Start)
For k = 0,1,2,... put G(k,x,t) := x -(1+2^k*t)*x^2/2 +(1+2^k*t+3^k*t^2)*x^3/3-(1+2^k*t+3^k*t^2+4^k*t^3)*x^4/4+.... Then the series reversion of G(k,x,t) with respect to x gives an e.g.f. for the present table when k = 0 and for A008517 when k = 1.
The e.g.f. B(x,t) := compositional inverse with respect to x of G(0,x,t) = (exp(x)-exp(x*t))/(exp(x*t)-t*exp(x)) = x + (1+t)*x^2/2! + (1+4*t+t^2)*x^3/3! + ... satisfies the autonomous differential equation dB/dx = (1+B)*(1+t*B) = 1 + (1+t)*B + t*B^2.
Applying [Bergeron et al., Theorem 1] gives a combinatorial interpretation for the Eulerian polynomials: A(n,t) counts plane increasing trees on n vertices where each vertex has outdegree <= 2, the vertices of outdegree 1 come in 1+t colors and the vertices of outdegree 2 come in t colors. An example is given below. Cf. A008517. Applying [Dominici, Theorem 4.1] gives the following method for calculating the Eulerian polynomials: Let f(x,t) = (1+x)*(1+t*x) and let D be the operator f(x,t)*d/dx. Then A(n+1,t) = D^n(f(x,t)) evaluated at x = 0.
(End)
With e.g.f. A(x,t) = G[x,(t-1)]-1 in Copeland's 2008 comment, the compositional inverse is Ainv(x,t) = log(t-(t-1)/(1+x))/(t-1). - Tom Copeland, Oct 11 2011
T(2*n+1,n+1) = (2*n+2)*T(2*n,n). (E.g., 66 = 6*11, 2416 = 8*302, ...) - Gary Detlefs, Nov 11 2011
E.g.f.: (1-y) / (1 - y*exp( (1-y)*x )). - Geoffrey Critzer, Nov 10 2012
From Peter Bala, Mar 12 2013: (Start)
Let {A(n,x)} n>=1 denote the sequence of Eulerian polynomials beginning [1, 1 + x, 1 + 4*x + x^2, ...]. Given two complex numbers a and b, the polynomial sequence defined by R(n,x) := (x+b)^n*A(n+1,(x+a)/(x+b)), n >= 0, satisfies the recurrence equation R(n+1,x) = d/dx((x+a)*(x+b)*R(n,x)). These polynomials give the row generating polynomials for several triangles in the database including A019538 (a = 0, b = 1), A156992 (a = 1, b = 1), A185421 (a = (1+i)/2, b = (1-i)/2), A185423 (a = exp(i*Pi/3), b = exp(-i*Pi/3)) and A185896 (a = i, b = -i).
(End)
E.g.f.: 1 + x/(T(0) - x*y), where T(k) = 1 + x*(y-1)/(1 + (k+1)/T(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Nov 07 2013
From Tom Copeland, Sep 18 2014: (Start)
A) Bivariate e.g.f. A(x,a,b)= (e^(ax)-e^(bx))/(a*e^(bx)-b*e^(ax)) = x + (a+b)*x^2/2! + (a^2+4ab+b^2)*x^3/3! + (a^3+11a^2b+11ab^2+b^3)x^4/4! + ...
B) B(x,a,b)= log((1+ax)/(1+bx))/(a-b) = x - (a+b)x^2/2 + (a^2+ab+b^2)x^3/3 - (a^3+a^2b+ab^2+b^3)x^4/4 + ... = log(1+u.*x), with (u.)^n = u_n = h_(n-1)(a,b) a complete homogeneous polynomial, is the compositional inverse of A(x,a,b) in x (see Drake, p. 56).
C) A(x) satisfies dA/dx = (1+a*A)(1+b*A) and can be written in terms of a Weierstrass elliptic function (see Buchstaber & Bunkova).
D) The bivariate Eulerian row polynomials are generated by the iterated derivative ((1+ax)(1+bx)d/dx)^n x evaluated at x=0 (see A145271).
E) A(x,a,b)= -(e^(-ax)-e^(-bx))/(a*e^(-ax)-b*e^(-bx)), A(x,-1,-1) = x/(1+x), and B(x,-1,-1) = x/(1-x).
F) FGL(x,y) = A(B(x,a,b) + B(y,a,b),a,b) = (x+y+(a+b)xy)/(1-ab*xy) is called the hyperbolic formal group law and related to a generalized cohomology theory by Lenart and Zainoulline. (End)
For x > 1, the n-th Eulerian polynomial A(n,x) = (x - 1)^n * log(x) * Integral_{u>=0} (ceiling(u))^n * x^(-u) du. - Peter Bala, Feb 06 2015
Sum_{j>=0} j^n/e^j, for n>=0, equals Sum_{k=1..n} T(n,k)e^k/(e-1)^(n+1), a rational function in the variable "e" which evaluates, approximately, to n! when e = A001113 = 2.71828... - Richard R. Forberg, Feb 15 2015
For a fixed k, T(n,k) ~ k^n, proved by induction. - Ran Pan, Oct 12 2015
From A145271, multiply the n-th diagonal (with n=0 the main diagonal) of the lower triangular Pascal matrix by g_n = (d/dx)^n (1+a*x)*(1+b*x) evaluated at x= 0, i.e., g_0 = 1, g_1 = (a+b), g_2 = 2ab, and g_n = 0 otherwise, to obtain the tridiagonal matrix VP with VP(n,k) = binomial(n,k) g_(n-k). Then the m-th bivariate row polynomial of this entry is P(m,a,b) = (1, 0, 0, 0, ...) [VP * S]^(m-1) (1, a+b, 2ab, 0, ...)^T, where S is the shift matrix A129185, representing differentiation in the divided powers basis x^n/n!. Also, P(m,a,b) = (1, 0, 0, 0, ...) [VP * S]^m (0, 1, 0, ...)^T. - Tom Copeland, Aug 02 2016
Cumulatively summing a row generates the n starting terms of the n-th differences of the n-th powers. Applying the finite difference method to x^n, these terms correspond to those before constant n! in the lowest difference row. E.g., T(4,k) is summed as 0+1=1, 1+11=12, 12+11=23, 23+1=4!. See A101101, A101104, A101100, A179457. - Andy Nicol, May 25 2024

Extensions

Thanks to Michael Somos for additional comments.
Further comments from Christian G. Bower, May 12 2000

A000182 Tangent (or "Zag") numbers: e.g.f. tan(x), also (up to signs) e.g.f. tanh(x).

Original entry on oeis.org

1, 2, 16, 272, 7936, 353792, 22368256, 1903757312, 209865342976, 29088885112832, 4951498053124096, 1015423886506852352, 246921480190207983616, 70251601603943959887872, 23119184187809597841473536, 8713962757125169296170811392, 3729407703720529571097509625856
Offset: 1

Views

Author

Keywords

Comments

Number of Joyce trees with 2n-1 nodes. Number of tremolo permutations of {0,1,...,2n}. - Ralf Stephan, Mar 28 2003
The Hankel transform of this sequence is A000178(n) for n odd = 1, 12, 34560, ...; example: det([1, 2, 16; 2, 16, 272, 16, 272, 7936]) = 34560. - Philippe Deléham, Mar 07 2004
a(n) is the number of increasing labeled full binary trees with 2n-1 vertices. Full binary means every non-leaf vertex has two children, distinguished as left and right; labeled means the vertices are labeled 1,2,...,2n-1; increasing means every child has a label greater than its parent. - David Callan, Nov 29 2007
From Micha Hofri (hofri(AT)wpi.edu), May 27 2009: (Start)
a(n) was found to be the number of permutations of [2n] which when inserted in order, to form a binary search tree, yield the maximally full possible tree (with only one single-child node).
The e.g.f. is sec^2(x)=1+tan^2(x), and the same coefficients can be manufactured from the tan(x) itself, which is the e.g.f. for the number of trees as above for odd number of nodes. (End)
a(n) is the number of increasing strict binary trees with 2n-1 nodes. For more information about increasing strict binary trees with an associated permutation, see A245894. - Manda Riehl, Aug 07 2014
For relations to alternating permutations, Euler and Bernoulli polynomials, zigzag numbers, trigonometric functions, Fourier transform of a square wave, quantum algebras, and integrals over and in n-dimensional hypercubes and over Green functions, see Hodges and Sukumar. For further discussion on the quantum algebra, see the later Hodges and Sukumar reference and the paper by Hetyei presenting connections to the general combinatorial theory of Viennot on orthogonal polynomials, inverse polynomials, tridiagonal matrices, and lattice paths (thereby related to continued fractions and cumulants). - Tom Copeland, Nov 30 2014
The Zigzag Hankel transform is A000178. That is, A000178(2*n - k) = det( [a(i+j - k)]{i,j = 1..n} ) for n>0 and k=0,1. - _Michael Somos, Mar 12 2015
a(n) is the number of standard Young tableaux of skew shape (n,n,n-1,n-2,...,3,2)/(n-1,n-2,n-3,...,2,1). - Ran Pan, Apr 10 2015
For relations to the Sheffer Appell operator calculus and a Riccati differential equation for generating the Meixner-Pollaczek and Krawtchouk orthogonal polynomials, see page 45 of the Feinsilver link and Rzadkowski. - Tom Copeland, Sep 28 2015
For relations to an elliptic curve, a Weierstrass elliptic function, the Lorentz formal group law, a Lie infinitesimal generator, and the Eulerian numbers A008292, see A155585. - Tom Copeland, Sep 30 2015
Absolute values of the alternating sums of the odd-numbered rows (where the single 1 at the apex of the triangle is counted as row #1) of the Eulerian triangle, A008292. The actual alternating sums alternate in sign, e.g., 1, -2, 16, -272, etc. (Even-numbered rows have alternating sums always 0.) - Gregory Gerard Wojnar, Sep 28 2018
The sequence is periodic modulo any odd prime p. The minimal period is (p-1)/2 if p == 1 mod 4 and p-1 if p == 3 mod 4 [Knuth & Buckholtz, 1967, Theorem 1]. - Allen Stenger, Aug 03 2020
From Peter Bala, Dec 24 2021: (Start)
Conjectures:
1) The sequence taken modulo any integer k eventually becomes periodic with period dividing phi(k).
2) The Gauss congruences a(n*p^k) == a(n*p^(k-1)) ( mod p^k ) hold for all prime p and positive integers n and k, except when p = 2, n = 1 and k = 1 or 2.
3) For i >= 1 define a_i(n) = a(n+i). The Gauss congruences a_i(n*p^k) == a_i(n*p^(k-1)) ( mod p^k ) hold for all prime p and positive integers n and k. If true, then for each i >= 1 the expansion of exp(Sum_{n >= 1} a_i(n)*x^n/n) has integer coefficients. For an example, see A262145.(End)

Examples

			tan(x) = x + 2*x^3/3! + 16*x^5/5! + 272*x^7/7! + ... = x + 1/3*x^3 + 2/15*x^5 + 17/315*x^7 + 62/2835*x^9 + O(x^11).
tanh(x) = x - 1/3*x^3 + 2/15*x^5 - 17/315*x^7 + 62/2835*x^9 - 1382/155925*x^11 + ...
(sec x)^2 = 1 + x^2 + 2/3*x^4 + 17/45*x^6 + ...
a(3)=16 because we have: {1, 3, 2, 5, 4}, {1, 4, 2, 5, 3}, {1, 4, 3, 5, 2},
  {1, 5, 2, 4, 3}, {1, 5, 3, 4, 2}, {2, 3, 1, 5, 4}, {2, 4, 1, 5, 3},
  {2, 4, 3, 5, 1}, {2, 5, 1, 4, 3}, {2, 5, 3, 4, 1}, {3, 4, 1, 5, 2},
  {3, 4, 2, 5, 1}, {3, 5, 1, 4, 2}, {3, 5, 2, 4, 1}, {4, 5, 1, 3, 2},
  {4, 5, 2, 3, 1}. - _Geoffrey Critzer_, May 19 2013
		

References

  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 932.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 88.
  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 111.
  • H. Doerrie, 100 Great Problems of Elementary Mathematics, Dover, NY, 1965, p. 69.
  • L. M. Milne-Thompson, Calculus of Finite Differences, 1951, p. 148 (the numbers |C^{2n-1}|).
  • J. W. Milnor and J. D. Stasheff, Characteristic Classes, Princeton, 1974, p. 282.
  • S. Mukai, An Introduction to Invariants and Moduli, Cambridge, 2003; see p. 444.
  • H. Rademacher, Topics in Analytic Number Theory, Springer, 1973, Chap. 1, p. 20.
  • L. Seidel, Über eine einfache Entstehungsweise der Bernoullischen Zahlen und einiger verwandten Reihen, Sitzungsberichte der mathematisch-physikalischen Classe der königlich bayerischen Akademie der Wissenschaften zu München, volume 7 (1877), 157-187.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • E. van Fossen Conrad, Some continued fraction expansions of elliptic functions, PhD thesis, The Ohio State University, 2002, p. 28.
  • J. V. Uspensky and M. A. Heaslet, Elementary Number Theory, McGraw-Hill, NY, 1939, pp. 267-268.

Crossrefs

A350972 is essentially the same sequence.
a(n)=2^(n-1)*A002105(n). Apart from signs, 2^(2n-2)*A001469(n) = n*a(n).
Cf. A001469, A002430, A036279, A000364 (secant numbers), A000111 (secant-tangent numbers), A024283, A009764. First diagonal of A059419 and of A064190.
Equals A002425(n) * 2^A101921(n).
Equals leftmost column of A162005. - Johannes W. Meijer, Jun 27 2009

Programs

  • Maple
    series(tan(x),x,40);
    with(numtheory): a := n-> abs(2^(2*n)*(2^(2*n)-1)*bernoulli(2*n)/(2*n));
    A000182_list := proc(n) local T,k,j; T[1] := 1;
    for k from 2 to n do T[k] := (k-1)*T[k-1] od;
       for k from 2 to n do
           for j from k to n do
               T[j] := (j-k)*T[j-1]+(j-k+2)*T[j] od od;
    seq(T[j], j=1..n)  end:
    A000182_list(15);  # Peter Luschny, Apr 02 2012
  • Mathematica
    Table[ Sum[2^(2*n + 1 - k)*(-1)^(n + k + 1)*k!*StirlingS2[2*n + 1, k], {k, 1, 2*n + 1}], {n, 0, 7}] (* Victor Adamchik, Oct 05 2005 *)
    v[1] = 2; v[n_] /; n >= 2 := v[n] = Sum[ Binomial[2 n - 3, 2 k - 2] v[k] v[n - k], {k, n - 1}]; Table[ v[n]/2, {n, 15}] (* Zerinvary Lajos, Jul 08 2009 *)
    Rest@ Union[ Range[0, 29]! CoefficientList[ Series[ Tan[x], {x, 0, 30}], x]] (* Harvey P. Dale, Oct 19 2011; modified by Robert G. Wilson v, Apr 02 2012 *)
    t[1, 1] = 1; t[1, 0] = 0; t[n_ /; n > 1, m_] := t[n, m] = m*(m+1)*Sum[t[n-1, k], {k, m-1, n-1}]; a[n_] := t[n, 1]; Table[a[n], {n, 1, 15}]  (* Jean-François Alcover, Jan 02 2013, after A064190 *)
    a[ n_] := If[ n < 1, 0, With[{m = 2 n - 1}, m! SeriesCoefficient[ Tan[x], {x, 0, m}]]]; (* Michael Somos, Mar 12 2015 *)
    a[ n_] := If[ n < 1, 0, ((-16)^n - (-4)^n) Zeta[1 - 2 n]]; (* Michael Somos, Mar 12 2015 *)
    Table[2 PolyGamma[2n - 1, 1/2]/Pi^(2n), {n, 1, 10}] (* Vladimir Reshetnikov, Oct 18 2015 *)
    a[ n_] := a[n] = If[ n < 2, Boole[n == 1], Sum[Binomial[2 n - 2, 2 k - 1] a[k] a[n - k], {k, n - 1}]]; (* Michael Somos, Aug 02 2018 *)
    a[n_] := (2^(2*n)*(2^(2*n) - 1)*Abs[BernoulliB[2*n]])/(2*n); a /@  Range[20]  (* Stan Wagon, Nov 21 2022 *)
  • Maxima
    a(n):=sum(sum(binomial(k,r)*sum(sum(binomial(l,j)/2^(j-1)*sum((-1)^(n)*binomial(j,i)*(j-2*i)^(2*n),i,0,floor((j-1)/2))*(-1)^(l-j),j,1,l)*(-1)^l*binomial(r+l-1,r-1),l,1,2*n)*(-1)^(1-r),r,1,k)/k,k,1,2*n); /* Vladimir Kruchinin, Aug 23 2010 */
    
  • Maxima
    a[n]:=if n=1 then 1 else 2*sum(sum(binomial(2*j,j+k)*(-4*k^2)^(n-1)*(-1)^k/(4^j),k,1,j),j,1,n-1);
    makelist(a[n],n,1,30); /* Tani Akinari, Sep 20 2023 */
    
  • PARI
    {a(n) = if( n<1, 0, ((-4)^n - (-16)^n) * bernfrac(2*n) / (2*n))};
    
  • PARI
    {a(n) = my(an); if( n<2, n==1, an = vector(n, m, 1); for( m=2, n, an[m] = sum( k=1, m-1, binomial(2*m - 2, 2*k - 1) * an[k] * an[m-k])); an[n])}; /* Michael Somos */
    
  • PARI
    {a(n) = if( n<1, 0, (2*n - 1)! * polcoeff( tan(x + O(x^(2*n + 2))), 2*n - 1))}; /* Michael Somos */
    
  • PARI
    {a(n) = my(X=x+x*O(x^n),Egf); Egf = x*sum(m=0,n, prod(k=1,m, tanh(2*k*X))); (n-1)!*polcoeff(Egf,n)} /* Paul D. Hanna, May 11 2010 */
    
  • PARI
    /* Continued Fraction for the e.g.f. tan(x), from Paul D. Hanna: */
    {a(n)=local(CF=1+O(x)); for(i=1, n, CF=1/(2*(n-i+1)-1-x^2*CF)); (2*n-1)!*polcoeff(x*CF, 2*n-1)}
    
  • PARI
    /* O.g.f. Sum_{n>=1} a(n)*x^n, from Paul D. Hanna Feb 05 2013: */
    {a(n)=polcoeff( x+2*x*sum(m=1, n, x^m*prod(k=1, m, (2*k-1)^2/(1+(2*k-1)^2*x +x*O(x^n))) ), n)}
    
  • Python
    # The objective of this implementation is efficiency.
    # n -> [0, a(1), a(2), ..., a(n)] for n > 0.
    def A000182_list(n):
        T = [0 for i in range(1, n+2)]
        T[1] = 1
        for k in range(2, n+1):
            T[k] = (k-1)*T[k-1]
        for k in range(2, n+1):
            for j in range(k, n+1):
                T[j] = (j-k)*T[j-1]+(j-k+2)*T[j]
        return T
    print(A000182_list(100)) # Peter Luschny, Aug 07 2011
    
  • Python
    from sympy import bernoulli
    def A000182(n): return abs(((2-(2<<(m:=n<<1)))*bernoulli(m)<Chai Wah Wu, Apr 14 2023
    
  • Sage
    # Algorithm of L. Seidel (1877)
    # n -> [a(1), ..., a(n)] for n >= 1.
    def A000182_list(len) :
        R = []; A = {-1:0, 0:1}; k = 0; e = 1
        for i in (0..2*len-1) :
            Am = 0; A[k + e] = 0; e = -e
            for j in (0..i) : Am += A[k]; A[k] = Am; k += e
            if e > 0 : R.append(A[i//2])
        return R
    A000182_list(15) # Peter Luschny, Mar 31 2012

Formula

E.g.f.: log(sec x) = Sum_{n > 0} a(n)*x^(2*n)/(2*n)!.
E.g.f.: tan x = Sum_{n >= 0} a(n+1)*x^(2*n+1)/(2*n+1)!.
E.g.f.: (sec x)^2 = Sum_{n >= 0} a(n+1)*x^(2*n)/(2*n)!.
2/(exp(2x)+1) = 1 + Sum_{n>=1} (-1)^(n+1) a(n) x^(2n-1)/(2n-1)! = 1 - x + x^3/3 - 2*x^5/15 + 17*x^7/315 - 62*x^9/2835 + ...
a(n) = 2^(2*n) (2^(2*n) - 1) |B_(2*n)| / (2*n) where B_n are the Bernoulli numbers (A000367/A002445 or A027641/A027642).
Asymptotics: a(n) ~ 2^(2*n+1)*(2*n-1)!/Pi^(2*n).
Sum[2^(2*n + 1 - k)*(-1)^(n + k + 1)*k!*StirlingS2[2*n + 1, k], {k, 1, 2*n + 1}]. - Victor Adamchik, Oct 05 2005
a(n) = abs[c(2*n-1)] where c(n)= 2^(n+1) * (1-2^(n+1)) * Ber(n+1)/(n+1) = 2^(n+1) * (1-2^(n+1)) * (-1)^n * Zeta(-n) = [ -(1+EN(.))]^n = 2^n * GN(n+1)/(n+1) = 2^n * EP(n,0) = (-1)^n * E(n,-1) = (-2)^n * n! * Lag[n,-P(.,-1)/2] umbrally = (-2)^n * n! * C{T[.,P(.,-1)/2] + n, n} umbrally for the signed Euler numbers EN(n), the Bernoulli numbers Ber(n), the Genocchi numbers GN(n), the Euler polynomials EP(n,t), the Eulerian polynomials E(n,t), the Touchard / Bell polynomials T(n,t), the binomial function C(x,y) = x!/[(x-y)!*y! ] and the polynomials P(j,t) of A131758. - Tom Copeland, Oct 05 2007
a(1) = A094665(0,0)*A156919(0,0) and a(n) = Sum_{k=1..n-1} 2^(n-k-1)*A094665(n-1, k)*A156919(k,0) for n = 2, 3, .., see A162005. - Johannes W. Meijer, Jun 27 2009
G.f.: 1/(1-1*2*x/(1-2*3*x/(1-3*4*x/(1-4*5*x/(1-5*6*x/(1-... (continued fraction). - Paul Barry, Feb 24 2010
From Paul Barry, Mar 29 2010: (Start)
G.f.: 1/(1-2x-12x^2/(1-18x-240x^2/(1-50x-1260x^2/(1-98x-4032x^2/(1-162x-9900x^2/(1-... (continued fraction);
coefficient sequences given by 4*(n+1)^2*(2n+1)*(2n+3) and 2(2n+1)^2 (see Van Fossen Conrad reference). (End)
E.g.f.: x*Sum_{n>=0} Product_{k=1..n} tanh(2*k*x) = Sum_{n>=1} a(n)*x^n/(n-1)!. - Paul D. Hanna, May 11 2010 [corrected by Paul D. Hanna, Sep 28 2023]
a(n) = (-1)^(n+1)*Sum_{j=1..2*n+1} j!*Stirling2(2*n+1,j)*2^(2*n+1-j)*(-1)^j for n >= 0. Vladimir Kruchinin, Aug 23 2010: (Start)
If n is odd such that 2*n-1 is prime, then a(n) == 1 (mod (2*n-1)); if n is even such that 2*n-1 is prime, then a(n) == -1 (mod (2*n-1)). - Vladimir Shevelev, Sep 01 2010
Recursion: a(n) = (-1)^(n-1) + Sum_{i=1..n-1} (-1)^(n-i+1)*C(2*n-1,2*i-1)* a(i). - Vladimir Shevelev, Aug 08 2011
E.g.f.: tan(x) = Sum_{n>=1} a(n)*x^(2*n-1)/(2*n-1)! = x/(1 - x^2/(3 - x^2/(5 - x^2/(7 - x^2/(9 - x^2/(11 - x^2/(13 -...))))))) (continued fraction from J. H. Lambert - 1761). - Paul D. Hanna, Sep 21 2011
From Sergei N. Gladkovskii, Oct 31 2011 to Oct 09 2013: (Start)
Continued fractions:
E.g.f.: (sec(x))^2 = 1+x^2/(x^2+U(0)) where U(k) = (k+1)*(2k+1) - 2x^2 + 2x^2*(k+1)*(2k+1)/U(k+1).
E.g.f.: tan(x) = x*T(0) where T(k) = 1-x^2/(x^2-(2k+1)*(2k+3)/T(k+1)).
E.g.f.: tan(x) = x/(G(0)+x) where G(k) = 2*k+1 - 2*x + x/(1 + x/G(k+1)).
E.g.f.: tanh(x) = x/(G(0)-x) where G(k) = k+1 + 2*x - 2*x*(k+1)/G(k+1).
E.g.f.: tan(x) = 2*x - x/W(0) where W(k) = 1 + x^2*(4*k+5)/((4*k+1)*(4*k+3)*(4*k+5) - 4*x^2*(4*k+3) + x^2*(4*k+1)/W(k+1)).
E.g.f.: tan(x) = x/T(0) where T(k) = 1 - 4*k^2 + x^2*(1 - 4*k^2)/T(k+1).
E.g.f.: tan(x) = -3*x/(T(0)+3*x^2) where T(k)= 64*k^3 + 48*k^2 - 4*k*(2*x^2 + 1) - 2*x^2 - 3 - x^4*(4*k -1)*(4*k+7)/T(k+1).
G.f.: 1/G(0) where G(k) = 1 - 2*x*(2*k+1)^2 - x^2*(2*k+1)*(2*k+2)^2*(2*k+3)/G(k+1).
G.f.: 2*Q(0) - 1 where Q(k) = 1 + x^2*(4*k + 1)^2/(x + x^2*(4*k + 1)^2 - x^2*(4*k + 3)^2*(x + x^2*(4*k + 1)^2)/(x^2*(4*k + 3)^2 + (x + x^2*(4*k + 3)^2)/Q(k+1) )).
G.f.: (1 - 1/G(0))*sqrt(-x), where G(k) = 1 + sqrt(-x) - x*(k+1)^2/G(k+1).
G.f.: Q(0), where Q(k) = 1 - x*(k+1)*(k+2)/( x*(k+1)*(k+2) - 1/Q(k+1)). (End)
O.g.f.: x + 2*x*Sum_{n>=1} x^n * Product_{k=1..n} (2*k-1)^2 / (1 + (2*k-1)^2*x). - Paul D. Hanna, Feb 05 2013
a(n) = (-4)^n*Li_{1-2*n}(-1). - Peter Luschny, Jun 28 2012
a(n) = (-4)^n*(4^n-1)*Zeta(1-2*n). - Jean-François Alcover, Dec 05 2013
Asymptotic expansion: 4*((2*(2*n-1))/(Pi*e))^(2*n-1/2)*exp(1/2+1/(12*(2*n-1))-1/(360*(2*n-1)^3)+1/(1260*(2*n-1)^5)-...). (See Luschny link.) - Peter Luschny, Jul 14 2015
From Peter Bala, Sep 11 2015: (Start)
The e.g.f. A(x) = tan(x) satisfies the differential equation A''(x) = 2*A(x)*A'(x) with A(0) = 0 and A'(0) = 1, leading to the recurrence a(0) = 0, a(1) = 1, else a(n) = 2*Sum_{i = 0..n-2} binomial(n-2,i)*a(i)*a(n-1-i) for the aerated sequence [0, 1, 0, 2, 0, 16, 0, 272, ...].
Note, the same recurrence, but with the initial conditions a(0) = 1 and a(1) = 1, produces the sequence n! and with a(0) = 1/2 and a(1) = 1 produces A080635. Cf. A002105, A234797. (End)
a(n) = 2*polygamma(2*n-1, 1/2)/Pi^(2*n). - Vladimir Reshetnikov, Oct 18 2015
a(n) = 2^(2n-2)*|p(2n-1,-1/2)|, where p_n(x) are the shifted row polynomials of A019538. E.g., a(2) = 2 = 2^2 * |1 + 6(-1/2) + 6(-1/2)^2|. - Tom Copeland, Oct 19 2016
From Peter Bala, May 05 2017: (Start)
With offset 0, the o.g.f. A(x) = 1 + 2*x + 16*x^2 + 272*x^3 + ... has the property that its 4th binomial transform 1/(1 - 4*x) A(x/(1 - 4*x)) has the S-fraction representation 1/(1 - 6*x/(1 - 2*x/(1 - 20*x/(1 - 12*x/(1 - 42*x/(1 - 30*x/(1 - ...))))))), where the coefficients [6, 2, 20, 12, 42, 30, ...] in the partial numerators of the continued fraction are obtained from the sequence [2, 6, 12, 20, ..., n*(n + 1), ...] by swapping adjacent terms. Compare with the S-fraction associated with A(x) given above by Paul Barry.
A(x) = 1/(1 + x - 3*x/(1 - 4*x/(1 + x - 15*x/(1 - 16*x/(1 + x - 35*x/(1 - 36*x/(1 + x - ...))))))), where the unsigned coefficients in the partial numerators [3, 4, 15, 16, 35, 36,...] come in pairs of the form 4*n^2 - 1, 4*n^2 for n = 1,2,.... (End)
a(n) = Sum_{k = 1..n-1} binomial(2*n-2, 2*k-1) * a(k) * a(n-k), with a(1) = 1. - Michael Somos, Aug 02 2018
a(n) = 2^(2*n-1) * |Euler(2*n-1, 0)|, where Euler(n,x) are the Euler polynomials. - Daniel Suteu, Nov 21 2018 (restatement of one of Copeland's 2007 formulas.)
x - Sum_{n >= 1} (-1)^n*a(n)*x^(2*n)/(2*n)! = x - log(cosh(x)). The series reversion of x - log(cosh(x)) is (1/2)*x - (1/2)*log(2 - exp(x)) = Sum_{n >= 0} A000670(n)*x^(n+1)/(n+1)!. - Peter Bala, Jul 11 2022
For n > 1, a(n) = 2*Sum_{j=1..n-1} Sum_{k=1..j} binomial(2*j,j+k)*(-4*k^2)^(n-1)*(-1)^k/(4^j). - Tani Akinari, Sep 20 2023
a(n) = A110501(n) * 4^(n-1) / n (Han and Liu, 2018). - Amiram Eldar, May 17 2024

A000629 Number of necklaces of partitions of n+1 labeled beads.

Original entry on oeis.org

1, 2, 6, 26, 150, 1082, 9366, 94586, 1091670, 14174522, 204495126, 3245265146, 56183135190, 1053716696762, 21282685940886, 460566381955706, 10631309363962710, 260741534058271802, 6771069326513690646, 185603174638656822266, 5355375592488768406230
Offset: 0

Views

Author

N. J. A. Sloane, Don Knuth, Nick Singer (nsinger(AT)eos.hitc.com)

Keywords

Comments

Also the number of logically distinct strings of first order quantifiers in which n variables occur (C. S. Peirce, c. 1903). - Stephen Pollard (spollard(AT)truman.edu), Jun 07 2002
Stirling transform of A052849(n) = [2, 4, 12, 48, 240, ...] is a(n) = [2, 6, 26, 150, 1082, ...]. - Michael Somos, Mar 04 2004
Stirling transform of A000142(n-1) = [1, 1, 2, 6, 24, ...] is a(n-1) = [1, 2, 6, 26, ...]. - Michael Somos, Mar 04 2004
Stirling transform of (-1)^n * A024167(n-1) = [0, 1, -1, 5, -14, 94, ...] is a(n-2) = [0, 1, 2, 6, 26, ...]. - Michael Somos, Mar 04 2004
The asymptotic expansion of 2*log(n) - (2^1*log(1) + 2^2*log(2) + ... + 2^n*log(n))/2^n is (a(1)/1)/n + (a(2)/2)/n^2 + (a(3)/3)/n^3 + ... - Michael Somos, Aug 22 2004
This is the sequence of cumulants of the probability distribution of the number of tails before the first head in a sequence of fair coin tosses. - Michael Hardy (hardy(AT)math.umn.edu), May 01 2005
Appears to be row sums of A154921. - Mats Granvik, Jan 18 2009
This is the number of cyclically ordered partitions of n+1 labeled points. The ordered version is A000670. - Michael Somos, Jan 08 2011
A000670(n+1) = p(n+1) where p(x) is the unique degree-n polynomial such that p(k) = a(k) for k = 0, 1, ..., n. - Michael Somos, Apr 27 2012
Row sums of A154921 as conjectured above by Granvik. a(n) gives the number of outcomes of a race between n horses H1,...,Hn, where if a horse falls it is not ranked. For example, when n = 2 the 6 outcomes are a dead heat, H1 wins H2 second, H2 wins H1 second, H1 wins H2 falls, H2 wins H1 falls or both fall. - Peter Bala, May 15 2012
Also the number of disjoint areas of a Venn diagram for n multisets. - Aurelian Radoaca, Jun 27 2016
Also the number of ways of ordering n nonnegative integers, allowing for the possibility of ties, and also comparing the smallest integers with 0. Each comparison with 0 gives two possibilities, x > 0 or x=0. As such, without comparison with 0, we get A000670, the number of ways of ordering n nonnegative integers, allowing for the possibility of ties, or the number of ways n competitors can rank in a competition, allowing for the possibility of ties. For instance, for 2 nonnegative integers x,y, there are the following 6 ways of ordering them: x = y = 0, x = y > 0, x > y = 0, x > y > 0, y > x = 0, y > x > 0. - Aurelian Radoaca, Jul 09 2016
Also the number of ordered set partitions of subsets of {1,...,n}. Also the number of chains of distinct nonempty subsets of {1,...,n}. - Gus Wiseman, Feb 01 2019
Number of combinations of a Simplex lock having n buttons.
Row sums of the unsigned cumulant expansion polynomials A127671 and logarithmic polynomials A263634. - Tom Copeland, Jun 04 2021
Also the number of vertices in the axis-aligned polytope consisting of all vectors x in R^n where, for all k in {1,...,n}, the k-th smallest coordinate of x lies in the interval [0, k]. - Adam P. Goucher, Jan 18 2023
Number of idempotent Boolean relation matrices whose complement is also idempotent. See Rosenblatt link. - Geoffrey Critzer, Feb 26 2023

Examples

			a(2)=6: the necklace representatives on 1,2,3 are ({123}), ({12},{3}), ({13},{2}), ({23},{1}), ({1},{2},{3}), ({1},{3},{2})
G.f. = 1 + 2*x + 6*x^2 + 26*x^3 + 150*x^4 + 1082*x^5 + 9366*x^6 + 94586*x^7 + ...
From _Gus Wiseman_, Feb 01 2019: (Start)
The a(3) = 26 ordered set partitions of subsets of {1,2,3} are:
  {}  {{1}}  {{2}}  {{3}}  {{12}}    {{13}}    {{23}}    {{123}}
                           {{1}{2}}  {{1}{3}}  {{2}{3}}  {{1}{23}}
                           {{2}{1}}  {{3}{1}}  {{3}{2}}  {{12}{3}}
                                                         {{13}{2}}
                                                         {{2}{13}}
                                                         {{23}{1}}
                                                         {{3}{12}}
                                                         {{1}{2}{3}}
                                                         {{1}{3}{2}}
                                                         {{2}{1}{3}}
                                                         {{2}{3}{1}}
                                                         {{3}{1}{2}}
                                                         {{3}{2}{1}}
(End)
		

References

  • R. Austin, R. K. Guy, and R. Nowakowski, unpublished notes, circa 1987.
  • N. G. de Bruijn, Asymptotic Methods in Analysis, Dover, 1981, p. 36.
  • Eric Hammer, The Calculations of Peirce's 4.453, Transactions of the Charles S. Peirce Society, Vol. 31 (1995), pp. 829-839.
  • D. E. Knuth, personal communication.
  • J. D. E. Konhauser et al., Which Way Did the Bicycle Go?, MAA 1996, p. 174.
  • Charles Sanders Peirce, Collected Papers, eds. C. Hartshorne and P. Weiss, Harvard University Press, Cambridge, Vol. 4, 1933, pp. 364-365. (CP 4.453 in the electronic edition of The Collected Papers of Charles Sanders Peirce.)
  • Dawidson Razafimahatolotra, Number of Preorders to Compute Probability of Conflict of an Unstable Effectivity Function, Preprint, Paris School of Economics, University of Paris I, Nov 23 2007.

Crossrefs

Same as A076726 except for a(0). Cf. A008965, A052861, A008277.
Binomial transform of A000670, also double of A000670. - Joe Keane (jgk(AT)jgk.org)
A002050(n) = a(n) - 1.
A000629, A000670, A002050, A052856, A076726 are all more-or-less the same sequence. - N. J. A. Sloane, Jul 04 2012
Row sums of A028246.
A diagonal of the triangular array in A241168.
Row sums of unsigned A127671 and A263634.

Programs

  • Maple
    spec := [ B, {B=Cycle(Set(Z,card>=1))}, labeled ]; [seq(combstruct[count](spec, size=n), n=0..20)];
    a:=n->add(Stirling2(n+1,k)*(k-1)!,k=1..n+1); # Mike Zabrocki, Feb 05 2005
  • Mathematica
    a[ 0 ] = 1; a[ n_ ] := (a[ n ] = 1 + Sum[ Binomial[ n, k ] a[ n-k ], {k, 1, n} ])
    Table[ PolyLog[n, 1/2], {n, 0, -18, -1}] (* Robert G. Wilson v, Aug 05 2010 *)
    a[ n_] := If[ n<0, 0, PolyLog[ -n, 1/2]]; (* Michael Somos, Mar 07 2011 *)
    Table[Sum[(-1)^(n-k) StirlingS2[n,k]k! 2^k,{k,0,n}],{n,0,20}] (* Harvey P. Dale, Oct 21 2011 *)
    Join[{1}, Rest[t=30; Range[0, t]! CoefficientList[Series[2/(2 - Exp[x]), {x, 0, t}], x]]] (* Vincenzo Librandi, Jan 02 2016 *)
  • PARI
    {a(n) = if( n<0, 0, n! * polcoeff(subst( (1 + y) / (1 - y), y, exp(x + x * O(x^n)) - 1), n))} /* Michael Somos, Mar 04 2004 */
    
  • PARI
    {a(n)=polcoeff(sum(m=0, n, 2^m*m!*x^m/prod(k=1, m, 1+k*x+x*O(x^n))), n)} \\ Paul D. Hanna, Jul 20 2011
    
  • Python
    from math import comb
    from functools import lru_cache
    @lru_cache(maxsize=None)
    def A000629(n): return 1+sum(comb(n,j)*A000629(j) for j in range(n)) if n else 1 # Chai Wah Wu, Sep 25 2023

Formula

a(n) = 2*A000670(n) - 0^n. - Michael Somos, Jan 08 2011
O.g.f.: Sum_{n>=0} 2^n*n!*x^n / Product_{k=0..n} (1+k*x). - Paul D. Hanna, Jul 20 2011
E.g.f.: exp(x) / (2 - exp(x)) = d/dx log(1 / (2 - exp(x))).
a(n) = Sum_{k>=1} k^n/2^k.
a(n) = 1 + Sum_{j=0..n-1} C(n, j)*a(j).
a(n) = round(n!/log(2)^(n+1)) (just for n <= 15). - Henry Bottomley, Jul 04 2000
a(n) is asymptotic to n!/log(2)^(n+1). - Benoit Cloitre, Oct 20 2002
a(n) = Sum_{k=0..n} (-1)^(n-k)*Stirling2(n, k)*k!*2^k. - Vladeta Jovovic, Sep 29 2003
a(n) = Sum_{k=1..n} A008292(n, k)*2^k; A008292: triangle of Eulerian numbers. - Philippe Deléham, Jun 05 2004
a(1) = 1, a(n) = 2*Sum_{k=1..n-1} k!*A008277(n-1, k) for n>1 or a(n) = Sum_{k=1..n} (k-1)!*A008277(n, k). - Mike Zabrocki, Feb 05 2005
a(n) = Sum_{k=0..n} Stirling2(n+1, k+1)*k!. - Paul Barry, Apr 20 2005
A000629 = binomial transform of this sequence. a(n) = sum of terms in n-th row of A028246. - Gary W. Adamson, May 30 2005
a(n) = 2*(-1)^n * n!*Laguerre(n,P((.),2)), umbrally, where P(j,t) are the polynomials in A131758. - Tom Copeland, Sep 28 2007
a(n) = 2^n*A(n,1/2); A(n,x) the Eulerian polynomials. - Peter Luschny, Aug 03 2010
a(n) = (-1)^n*b(n), where b(n) = -2*Sum_{k=0..n-1} binomial(n,k)*b(k), b(0)=1. - Vladimir Kruchinin, Jan 29 2011
Row sums of A028246. Let f(x) = x+x^2. Then a(n+1) = (f(x)*d/dx)^n f(x) evaluated at x = 1. - Peter Bala, Oct 06 2011
O.g.f.: 1+2*x/(U(0)-2*x) where U(k)=1+3*x+3*x*k-2*x*(k+2)*(1+x+x*k)/U(k+1); (continued fraction). - Sergei N. Gladkovskii, Nov 14 2011
E.g.f.: exp(x)/(2 - exp(x)) = 2/(2-Q(0))-1; Q(k)=1+x/(2*k+1-x*(2*k+1)/(x+(2*k+2)/Q(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Nov 14 2011
G.f.: 1 / (1 - 2*x / (1 - 1*x / (1 - 4*x / (1 - 2*x / (1 - 6*x / ...))))). - Michael Somos, Apr 27 2012
PSUM transform of A162509. BINOMIAL transform is A007047. - Michael Somos, Apr 27 2012
G.f.: 1/G(0) where G(k) = 1 - x*(2*k+2)/( 1 - x*(k+1)/G(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Mar 23 2013
E.g.f.: 1/E(0) where E(k) = 1 - x/(k+1)/(1 - 1/(1 + 1/E(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Mar 27 2013
G.f.: T(0)/(1-2*x), where T(k) = 1 - 2*x^2*(k+1)^2/(2*x^2*(k+1)^2 - (1 - 2*x - 3*x*k)*(1 - 5*x - 3*x*k)/T(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Oct 29 2013
a(n) = log(2)*integral_{x>=0} (ceiling(x))^n * 2^(-x) dx. - Peter Bala, Feb 06 2015

Extensions

a(19) from Michael Somos, Mar 07 2011

A173018 Euler's triangle: triangle of Eulerian numbers T(n,k) (n>=0, 0 <= k <= n) read by rows.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 4, 1, 0, 1, 11, 11, 1, 0, 1, 26, 66, 26, 1, 0, 1, 57, 302, 302, 57, 1, 0, 1, 120, 1191, 2416, 1191, 120, 1, 0, 1, 247, 4293, 15619, 15619, 4293, 247, 1, 0, 1, 502, 14608, 88234, 156190, 88234, 14608, 502, 1, 0, 1, 1013, 47840, 455192, 1310354, 1310354, 455192, 47840, 1013, 1, 0
Offset: 0

Views

Author

N. J. A. Sloane, Nov 21 2010

Keywords

Comments

This version indexes the Eulerian numbers in the same way as Graham et al.'s Concrete Mathematics (see references section). The traditional indexing, used by Riordan, Comtet and others, is given in A008292, which is the main entry for the Eulerian numbers.
Each row of A123125 is the reverse of the corresponding row in A173018. - Michael Somos Mar 17 2011
Triangle T(n,k), read by rows, given by [1,0,2,0,3,0,4,0,5,0,6,0,7,0,8,0,9,...] DELTA [0,1,0,2,0,3,0,4,0,5,0,6,0,7,0,8,0,9,...] where DELTA is the operator defined in A084938. - Philippe Deléham Sep 30 2011
[ E(.,t)/(1-t)]^n = n!*Lag[n,-P(.,t)/(1-t)] and [ -P(.,t)/(1-t)]^n = n!*Lag[n, E(.,t)/(1-t)] umbrally comprise a combinatorial Laguerre transform pair, where E(n,t) are the Eulerian polynomials (e.g., E(2,t)= 1+t) and P(n,t) are the polynomials related to polylogarithms in A131758. - Tom Copeland, Oct 03 2014
See A131758 for connections of the evaluation of these polynomials at -1 (alternating row sum) to the Euler, Genocchi, Bernoulli, and zag/tangent numbers and values of the Riemann zeta function and polylogarithms. See also A119879 for the Swiss-knife polynomials. - Tom Copeland, Oct 20 2015

Examples

			Triangle begins:
[ 0] 1,
[ 1] 1,    0,
[ 2] 1,    1,     0,
[ 3] 1,    4,     1,      0,
[ 4] 1,   11,    11,      1,       0,
[ 5] 1,   26,    66,     26,       1,       0,
[ 6] 1,   57,   302,    302,      57,       1,      0,
[ 7] 1,  120,  1191,   2416,    1191,     120,      1,     0,
[ 8] 1,  247,  4293,  15619,   15619,    4293,    247,     1,    0,
[ 9] 1,  502, 14608,  88234,  156190,   88234,  14608,   502,    1, 0,
[10] 1, 1013, 47840, 455192, 1310354, 1310354, 455192, 47840, 1013, 1, 0.
		

References

  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, table 254.
  • See A008292 for additional references and links.

Crossrefs

Row sums give A000142.
See A008517 and A201637 for the second-order numbers.
Cf. A123125 (row reversed version).
For this triangle read mod m for m=2 through 10 see A290452-A290460. See also A047999 for the mod 2 version.

Programs

  • Haskell
    a173018 n k = a173018_tabl !! n !! k
    a173018_row n = a173018_tabl !! n
    a173018_tabl = map reverse a123125_tabl
    -- Reinhard Zumkeller, Nov 06 2013
    
  • Magma
    [[n le 0 select 1 else (&+[(-1)^j*Binomial(n+1,j)*(k-j+1)^n: j in [0..k+1]]): k in [0..n]]: n in [0..12]]; // G. C. Greubel, Feb 25 2019
    
  • Magma
    T:= func< n,k | n eq 0 select 1 else &+[(-1)^(k-j+1)*Binomial(n+1,k-j+1)*j^n: j in [0..k+1]] >;
    [T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 28 2020
    
  • Maple
    T:= proc(n, k) option remember;
          if k=0 and n>=0 then 1
        elif k<0 or  k>n  then 0
        else (n-k) * T(n-1, k-1) + (k+1) * T(n-1, k)
          fi
        end:
    seq(seq(T(n, k), k=0..n), n=0..10);  # Alois P. Heinz, Jan 14 2011
    # Maple since version 13:
    A173018 := (n,k) -> combinat[eulerian1](n,k): # Peter Luschny, Nov 11 2012
    # Or:
    egf := 1 + log((x*exp(-t) - exp(-t*x))/(x-1))/(t*x):
    ser := series(egf, t, 12): ct := n -> coeff(ser, t, n):
    seq(print(seq((-1)^n*(n+1)!*coeff(ct(n), x, k), k=0..n)), n=0..8); # Peter Luschny, Aug 12 2022
  • Mathematica
    t[n_ /; n >= 0, 0] = 1; t[n_, k_] /; k < 0 || k > n = 0;
    t[n_,k_] := t[n,k] = (n-k)*t[n-1,k-1] + (k+1)*t[n-1, k]; Flatten[Table[t[n,k], {n,0,11}, {k,0,n}]][[1 ;; 60]]
    (* Jean-François Alcover, Apr 29 2011, after Maple program *)
    << Combinatorica`
    Flatten[Table[Eulerian[n, k], {n, 0, 20}, {k, 0, n}]]
    (* To generate the table of the numbers T(n,k) *)
    RecurrenceTable[{T[n + 1, k + 1] == (n - k) T[n, k] + (k + 2) T[n, k + 1], T[0, k] == KroneckerDelta[k]}, T, {n, 0, 12}, {k, 0, 12}] (* Emanuele Munarini, Jan 03 2018 *)
    Table[If[n==0,1, Sum[(-1)^j*Binomial[n+1, j]*(k+1-j)^n, {j,0,k+1}]], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Feb 25 2019 *)
  • PARI
    T(n,k) = if(n==0, 1, sum(j=0,k+1, (-1)^(k-j+1)*binomial(n+1,k-j+1)*j^n)); \\ G. C. Greubel, Feb 28 2020
  • Sage
    @CachedFunction
    def eulerian1(n, k):
        if k==0: return 1
        if k==n: return 0
        return eulerian1(n-1, k)*(k+1)+eulerian1(n-1, k-1)*(n-k)
    for n in (0..9): [eulerian1(n, k) for k in(0..n)] # Peter Luschny, Nov 11 2012
    
  • Sage
    [1] + [[sum((-1)^(k-j+1)*binomial(n+1,k-j+1)*j^n for j in (0..k+1)) for k in (0..n)] for n in (1..12)] # G. C. Greubel, Feb 25 2019
    

Formula

E.g.f.: (y - 1)/(y - exp(x*(y - 1))). - Geoffrey Critzer, May 04 2017
T(n, k) = Sum_{j=0..k} (-1)^j*binomial(n+1, j)*(k+1-j)^n. - G. C. Greubel, Feb 25 2019
T(n, k) = (-1)^n*(n+1)!*[x^k][t^n](1 + log((x*exp(-t) - exp(-t*x))/(x-1))/(t*x)). - Peter Luschny, Aug 12 2022

A084358 Lists of sets of lists.

Original entry on oeis.org

1, 1, 5, 37, 363, 4441, 65133, 1114009, 21771851, 478658101, 11692343253, 314170940293, 9209104364331, 292435635165649, 10000637145321917, 366427621403088433, 14321135069200849515, 594696814358067968461, 26147933188037724372069
Offset: 0

Views

Author

N. J. A. Sloane, Jun 22 2003

Keywords

Comments

This sequence and -A000262 with the first term set to 1 form a reciprocal pair under the list partition transform and associated operations described in A133314. - Tom Copeland, Oct 21 2007

References

  • T. S. Motzkin, Sorting numbers ...: for a link to an annotated scanned version of this paper see A000262.
  • T. S. Motzkin, Sorting numbers for cylinders and other classification numbers, in Combinatorics, Proc. Symp. Pure Math. 19, AMS, 1971, pp. 167-176.

Programs

  • Magma
    m:=25; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(1/(2-Exp(x/(1-x))))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, May 16 2018
  • Maple
    with(combstruct); SeqSetSeqL := [T, {T=Sequence(S), S=Set(U,card >= 1), U=Sequence(Z,card >=1)},labeled]; [seq(count(%,size=j),j=1..12)];
  • Mathematica
    With[{nn=20},CoefficientList[Series[1/(2-Exp[x/(1-x)]),{x,0,nn}],x] Range[ 0,nn]!] (* Harvey P. Dale, Apr 16 2013 *)
  • PARI
    x='x+O('x^30); Vec(serlaplace(1/(2-exp(x/(1-x))))) \\ G. C. Greubel, May 16 2018
    

Formula

a(n) = n!*Lag{n,(.)!*Lag[.,P(.,2),0],-1} = P(n,2) - n*P(n-1,2) umbrally, where P(j,t) are the polynomials in A131758 and Lag(n,x,a) are the associated Laguerre polynomials of order a; that is, the sequence is given by an iterated combinatorial Laguerre transform, of mixed order, of a set of polynomials related to the polylogarithms, which reduces to a simple finite difference. - Tom Copeland, Sep 30 2007
E.g.f.: 1/(2-exp(x/(1-x))). Lah transform of preferential arrangements: Sum_{k=0..n} n!/k!*binomial(n-1, k-1)*A000670(k). - Vladeta Jovovic, Sep 28 2003
a(n) ~ n! * (1+log(2))^(n-1) / (2*(log(2))^(n+1)). - Vaclav Kotesovec, Oct 08 2013
Showing 1-7 of 7 results.