cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A131780 Row sums of triangle A131779.

Original entry on oeis.org

1, 4, 5, 10, 15, 26, 41, 68, 109, 178, 287, 466, 753, 1220, 1973, 3194, 5167, 8362, 13529, 21892, 35421, 57314, 92735, 150050, 242785, 392836, 635621, 1028458, 1664079, 2692538, 4356617, 7049156, 11405773, 18454930, 29860703, 48315634, 78176337, 126491972
Offset: 1

Views

Author

Gary W. Adamson, Jul 14 2007

Keywords

Comments

a(n)/a(n-1) tends to phi; e.g., a(10)/a(9) = 178/109 = 1.633...

Examples

			a(4) = 10 = sum of row 4 terms of triangle A131779: (3 + 1 + 5 + 1).
		

Crossrefs

Row sums of A131779.

Programs

  • Mathematica
    LinearRecurrence[{1,2,-1,-1},{1,4,5,10},40] (* or *) CoefficientList[ Series[(1+3*x-x^2-2*x^3)/(1-x-2*x^2+x^3+x^4),{x,0,40}],x] (* Harvey P. Dale, Aug 27 2021 *)
  • PARI
    a(n) = 2*fibonacci(n+1) - (1 - (-1)^n)/2; \\ Andrew Howroyd, Sep 01 2018
    
  • PARI
    Vec((1 + 3*x - x^2 - 2*x^3)/((1 - x)*(1 + x)*(1 - x - x^2)) + O(x^40)) \\ Andrew Howroyd, Sep 01 2018

Formula

From Andrew Howroyd, Sep 01 2018: (Start)
a(n) = 2*Fibonacci(n+1) - (1 - (-1)^n)/2.
a(n) = a(n-1) + 2*a(n-2) - a(n-3) - a(n-4) for n > 4.
G.f.: x*(1 + 3*x - x^2 - 2*x^3)/((1 - x)*(1 + x)*(1 - x - x^2)). (End)
E.g.f.: 2*exp(x/2)*(5*cosh(sqrt(5)*x/2) + sqrt(5)*sinh(sqrt(5)*x/2))/5 - sinh(x) - 2. - Stefano Spezia, Jul 11 2025

Extensions

Terms a(11) and beyond from Andrew Howroyd, Sep 01 2018