A131780 Row sums of triangle A131779.
1, 4, 5, 10, 15, 26, 41, 68, 109, 178, 287, 466, 753, 1220, 1973, 3194, 5167, 8362, 13529, 21892, 35421, 57314, 92735, 150050, 242785, 392836, 635621, 1028458, 1664079, 2692538, 4356617, 7049156, 11405773, 18454930, 29860703, 48315634, 78176337, 126491972
Offset: 1
Examples
a(4) = 10 = sum of row 4 terms of triangle A131779: (3 + 1 + 5 + 1).
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,2,-1,-1)
Crossrefs
Row sums of A131779.
Programs
-
Mathematica
LinearRecurrence[{1,2,-1,-1},{1,4,5,10},40] (* or *) CoefficientList[ Series[(1+3*x-x^2-2*x^3)/(1-x-2*x^2+x^3+x^4),{x,0,40}],x] (* Harvey P. Dale, Aug 27 2021 *)
-
PARI
a(n) = 2*fibonacci(n+1) - (1 - (-1)^n)/2; \\ Andrew Howroyd, Sep 01 2018
-
PARI
Vec((1 + 3*x - x^2 - 2*x^3)/((1 - x)*(1 + x)*(1 - x - x^2)) + O(x^40)) \\ Andrew Howroyd, Sep 01 2018
Formula
From Andrew Howroyd, Sep 01 2018: (Start)
a(n) = 2*Fibonacci(n+1) - (1 - (-1)^n)/2.
a(n) = a(n-1) + 2*a(n-2) - a(n-3) - a(n-4) for n > 4.
G.f.: x*(1 + 3*x - x^2 - 2*x^3)/((1 - x)*(1 + x)*(1 - x - x^2)). (End)
E.g.f.: 2*exp(x/2)*(5*cosh(sqrt(5)*x/2) + sqrt(5)*sinh(sqrt(5)*x/2))/5 - sinh(x) - 2. - Stefano Spezia, Jul 11 2025
Extensions
Terms a(11) and beyond from Andrew Howroyd, Sep 01 2018
Comments