cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A131836 Multiplicative persistence of the Sierpinski numbers of the first kind (n^n + 1).

Original entry on oeis.org

0, 0, 2, 2, 3, 2, 2, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Keywords

Comments

Question: Are there any terms larger than 1 after a(22) = 2? In other words, do all terms of A014566 contain zero somewhere in their decimal representation after A014566(22) = 341427877364219557396646723585? - Antti Karttunen, Oct 08 2017

Examples

			For n=4 we have A014566(4) = Sierpinski number 257 --> 2*5*7 = 70 --> 7*0 = 0 thus persistence = 2, and a(4) = 2. - Edited by _Antti Karttunen_, Oct 08 2017
		

Crossrefs

Programs

  • Maple
    P:=proc(n) local i,k,w,ok,cont; for i from 1 by 1 to n do w:=1; k:=i^i+1; ok:=1; if k<10 then print(0); else cont:=1; while ok=1 do while k>0 do w:=w*(k-(trunc(k/10)*10)); k:=trunc(k/10); od; if w<10 then ok:=0; print(cont); else cont:=cont+1; k:=w; w:=1; fi; od; fi; od; end: P(100);
  • Mathematica
    Table[-1 + Length@ NestWhileList[Times @@ IntegerDigits@ # &, If[n == 0, 2, n^n + 1], # > 9 &], {n, 105}] (* Michael De Vlieger, Oct 08 2017 *)
  • Scheme
    ;; The whole program follows:
    (define (A131836 n) (A031346 (A014566 n)))
    (define (A014566 n) (+ 1 (expt n n)))
    (define (A031346 n) (let loop ((n n) (k 0)) (if (< n 10) k (loop (A007954 n) (+ 1 k)))))
    (define (A007954 n) (if (zero? n) n (let loop ((n n) (m 1)) (if (zero? n) m (let ((d (modulo n 10))) (loop (/ (- n d) 10) (* d m)))))))
    ;; Antti Karttunen, Oct 08 2017

Formula

a(n) = A031346(A014566(n)). - Michel Marcus, Oct 08 2017