A131838 Multiplicative persistence of Woodall numbers.
0, 0, 1, 2, 3, 3, 2, 1, 1, 1, 2, 2, 1, 2, 2, 1, 5, 2, 2, 1, 1, 8, 3, 1, 1, 1, 2, 2, 2, 2, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 2, 2, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1
Examples
Woodall number 159 --> 1*5*9=45 --> 4*5=20 --> 2*0=0 thus persistence is 3.
Programs
-
Maple
P:=proc(n) local i,k,w,ok,cont; for i from 1 by 1 to n do w:=1; k:=i*2^i-1; ok:=1; if k<10 then print(0); else cont:=1; while ok=1 do while k>0 do w:=w*(k-(trunc(k/10)*10)); k:=trunc(k/10); od; if w<10 then ok:=0; print(cont); else cont:=cont+1; k:=w; w:=1; fi; od; fi; od; end: P(120);
-
Mathematica
Table[wn=n*2^n-1;Length[NestWhileList[Times@@IntegerDigits[#]&, wn, #>=10&]], {n, 105}]-1 (* James C. McMahon, Mar 01 2025 *)
Comments