cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A131868 a(n) = (2*n^2)^(-1)*Sum_{d|n} (-1)^(n+d)*moebius(n/d)*binomial(2*d,d).

Original entry on oeis.org

1, 1, 1, 2, 5, 13, 35, 100, 300, 925, 2915, 9386, 30771, 102347, 344705, 1173960, 4037381, 14004912, 48954659, 172307930, 610269695, 2173656683, 7782070631, 27992709172, 101128485150, 366803656323, 1335349400274, 4877991428982
Offset: 1

Views

Author

Vladeta Jovovic, Oct 04 2007

Keywords

Comments

n*a(n) is the number of n-member subsets of {1,2,3,...,2*n-1} that sum to 1 mod n, cf. A145855. - Vladeta Jovovic, Oct 28 2008
a(n) is the number of orbits under the S_n action on a set closely related to the set of parking functions. See Konvalinka-Tewari reference below. - Vasu Tewari, Mar 17 2020

Crossrefs

Programs

  • Maple
    A131868 := proc(n) local a,d ; a := 0 ; for d in numtheory[divisors](n) do a := a+(-1)^(n+d)*numtheory[mobius](n/d)*binomial(2*d,d) ; od: a/2/n^2 ; end: seq(A131868(n),n=1..30) ; # R. J. Mathar, Oct 24 2007
  • Mathematica
    a = {}; For[n = 1, n < 30, n++, b = Divisors[n]; s = 0; For[j = 1, j < Length[b] + 1, j++, s = s + (-1)^(n + b[[j]])*MoebiusMu[n/b[[j]]]* Binomial[2*b[[j]], b[[j]]]]; AppendTo[a, s/(2*n^2)]]; a (* Stefan Steinerberger, Oct 26 2007 *)
    a[n_] := 1/(2n^2) DivisorSum[n, (-1)^(n+#) MoebiusMu[n/#] Binomial[2#, #]& ]; Array[a, 30] (* Jean-François Alcover, Dec 18 2015 *)
  • PARI
    a(n) = (2*n^2)^(-1)*sumdiv(n, d, (-1)^(n+d)*moebius(n/d)*binomial(2*d,d)); \\ Michel Marcus, Dec 06 2018

Formula

a(n) ~ 2^(2*n - 1) / (sqrt(Pi) * n^(5/2)). - Vaclav Kotesovec, Jun 08 2019

Extensions

More terms from R. J. Mathar and Stefan Steinerberger, Oct 24 2007