cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A284279 Primitive terms of A131884.

Original entry on oeis.org

276, 306, 396, 564, 660, 696, 780, 828, 888, 966, 996, 1074, 1086, 1098
Offset: 1

Views

Author

Sergey Pavlov, Mar 24 2017

Keywords

Comments

In other words, terms of A131884 that cannot be written as k*t where k is an integer, k > 1, t is a term of A131884.

Examples

			Since 276 is the first term of A131884, the number is in the sequence. But 131884(4) = 552 is not, because A131884(4) = 2 * A131884(1) = 2 * 276.
		

Crossrefs

Cf. A131884.

A063769 Aspiring numbers: numbers whose aliquot sequence terminates in a perfect number.

Original entry on oeis.org

25, 95, 119, 143, 417, 445, 565, 608, 650, 652, 675, 685, 783, 790, 909, 913
Offset: 1

Views

Author

Tanya Khovanova and Alexey Radul, Aug 14 2001

Keywords

Comments

There are many numbers whose aliquot sequences have not yet been completely computed, so this sequence is not fully known. In particular, 276 may, perhaps, be an element of this sequence, although this is very unlikely.
Numbers less than 1000 whose aliquot sequence is not known that could possibly be in this sequence are: 276, 306, 396, 552, 564, 660, 696, 780, 828, 888, 966, 996. - Robert Price, Jun 03 2013

Examples

			The divisors of 95 less than itself are 1, 5 and 19. They sum to 25. The divisors of 25 less than itself are 1 and 5. They sum to 6, which is perfect.
		

References

  • No number terminates at 28, the second perfect number.

Crossrefs

Programs

  • Mathematica
    perfectQ[n_] := DivisorSigma[1, n] == 2*n; maxAliquot = 10^45; A131884 = {}; s[1] = 1; s[n_] := DivisorSigma[1, n] - n; selQ[n_ /; n <= 5] = False; selQ[n_] := NestWhile[s, n, If[{##}[[-1]] > maxAliquot, Print["A131884: ", n]; AppendTo[A131884, n]; False, Length[{##}] < 4 || {##}[[-4 ;; -3]] != {##}[[-2 ;; -1]]] &, All] // perfectQ; Reap[For[k = 1, k < 1000, k++, If[! perfectQ[k] && selQ[k], Print[k]; Sow[k]]]][[2, 1]] (* Jean-François Alcover, Nov 15 2013 *)

Extensions

a(13)-a(16) from Robert Price, Jun 03 2013

A080907 Numbers whose aliquot sequence terminates in a 1.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75
Offset: 1

Views

Author

Gabriel Cunningham (gcasey(AT)mit.edu), Mar 31 2003

Keywords

Comments

All primes are in this set because s(p) = 1 for p prime. Perfect numbers are clearly not in this set. Neither are aspiring numbers (A063769), or numbers whose aliquot sequence is a cycle (such as 220 and 284).
There are some numbers whose aliquot sequences haven't been fully determined (such as 276).

Examples

			4 is in this set because its aliquot chain is 4->3->1. 6 is not in this set because it is perfect. 25 is not in this set because its aliquot chain is 25->6.
		

Crossrefs

Complement of A126016.

Programs

  • Mathematica
    maxAliquot = 10^50; A131884 = {}; s[1] = 1; s[n_] := DivisorSigma[1, n] - n; selQ[n_ /; n <= 5] = True; selQ[n_] := NestWhile[s, n, If[{##}[[-1]] > maxAliquot, Print["A131884: ", n]; AppendTo[A131884, n]; False, Length[{##}] < 4 || {##}[[-4 ;; -3]] != {##}[[-2 ;; -1]]] & , All] == 1; Select[Range[1, 1100], selQ] (* Jean-François Alcover, Nov 14 2013, updated Sep 10 2015 *)

Formula

n is a member if n = 1 or s(n) is a member, where s(n) is the sum of the proper factors of n.

Extensions

Edited by N. J. A. Sloane, Aug 14 2006
More terms from Franklin T. Adams-Watters, Dec 14 2006
The fact that 840 was missing from the sequence b-file was pointed out by Philip Turecek, Sep 10 2015

A126016 Numbers whose aliquot sequence does not terminate in 1.

Original entry on oeis.org

6, 25, 28, 95, 119, 143, 220
Offset: 1

Views

Author

Keywords

Comments

Sequence continues 276?, 284, 306?, 396?, 417, 445, 496, .... Because 276, 306 and 396 are all in the same family, either all 3 are present or none are. It is not known whether any aliquot sequence grows without bound; 276 is the smallest number for which this is unknown.
Additional tentative terms: 552, 562, 564, 565, 608, 650, 652, 660, 675, 685, 696, 780, 783, 790, 828, 840, 888, 909, 913, 966, 996, 1064, 1074, 1086, 1098, ... - Jean-François Alcover, Nov 14 2013
For additional terms, if the Goldbach Conjecture is assumed, take any odd term, subtract 1, and find two distinct primes that sum to it. For some numbers there will not be any pair of distinct primes. Multiply the two primes and the product is an element of the sequence. Note that this process does not work if the term - 1 is power of a prime. - Nathaniel J. Strout, Nov 25 2018

Crossrefs

Complement of A080907. Includes A000396, A063990 and other sociable numbers, A063769, numbers whose aliquot sequence reaches a sociable number and numbers whose aliquot sequence grows without bound.

Programs

  • Mathematica
    maxAliquot = 10^45; A131884 = {}; s[1] = 1; s[n_] := DivisorSigma[1, n] - n; selQ[n_ /; n <= 5] = True; selQ[n_] := NestWhile[s, n, If[{##}[[-1]] > maxAliquot, Print["A131884: ", n]; AppendTo[A131884, n]; False, Length[{##}] < 4 || {##}[[-4 ;; -3]] != {##}[[-2 ;; -1]]] & , All] == 1; Reap[For[k = 1, k < 1100, k++, If[!selQ[k], Print[k]; Sow[k]]]][[2, 1]]

A216072 Aliquot open end sequences which belong to distinct families.

Original entry on oeis.org

276, 552, 564, 660, 966, 1074, 1134, 1464, 1476, 1488, 1512, 1560, 1578, 1632, 1734, 1920, 1992, 2232, 2340, 2360, 2484, 2514, 2664, 2712, 2982, 3270, 3366, 3408, 3432, 3564, 3678, 3774, 3876, 3906, 4116, 4224, 4290, 4350, 4380, 4788, 4800, 4842
Offset: 1

Views

Author

V. Raman, Sep 01 2012

Keywords

Comments

These aliquot sequences are believed to grow forever without terminating in a prime or entering a cycle.
Sequence A131884 lists all the starting values of an aliquot sequence that lead to open-ending. It includes all values obtained by iterating from the starting values of this sequence. But this sequence lists only the values that are the lowest starting elements of open end aliquot sequences that are the part of different open-ending families. - V. Raman, Dec 08 2012

Crossrefs

A347769 a(0) = 0; a(1) = 1; for n > 1, a(n) = A001065(a(n-1)) = sigma(a(n-1)) - a(n-1) (the sum of aliquot parts of a(n-1)) if this is not yet in the sequence; otherwise a(n) is the smallest number missing from the sequence.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 16, 15, 13, 14, 17, 18, 21, 19, 20, 22, 23, 24, 36, 55, 25, 26, 27, 28, 29, 30, 42, 54, 66, 78, 90, 144, 259, 45, 33, 31, 32, 34, 35, 37, 38, 39, 40, 50, 43, 41, 44, 46, 47, 48, 76, 64, 63, 49, 51, 52, 53, 56, 57, 58, 59, 60, 108, 172
Offset: 0

Views

Author

Eric Chen, Sep 13 2021

Keywords

Comments

This sequence is a permutation of the nonnegative integers iff Catalan's aliquot sequence conjecture (also called Catalan-Dickson conjecture) is true.
a(563) = 276 is the smallest number whose aliquot sequence has not yet been fully determined.
As long as the aliquot sequence of 276 is not known to be finite or eventually periodic, a(563+k) = A008892(k).

Examples

			a(0) = 0, a(1) = 1;
since A001065(a(1)) = 0 has already appeared in this sequence, a(2) = 2;
since A001065(a(2)) = 1 has already appeared in this sequence, a(3) = 3;
...
a(11) = 11;
since A001065(a(11)) = 1 has already appeared in this sequence, a(12) = 12;
since A001065(a(12)) = 16 has not yet appeared in this sequence, a(13) = A001065(a(12)) = 16;
since A001065(a(13)) = 15 has not yet appeared in this sequence, a(14) = A001065(a(13)) = 15;
since A001065(a(14)) = 9 has already appeared in this sequence, a(15) = 13;
...
		

Crossrefs

Cf. A032451.
Cf. A001065 (sum of aliquot parts).
Cf. A003023, A044050, A098007, A098008: ("length" of aliquot sequences, four versions).
Cf. A007906.
Cf. A115060 (maximum term of aliquot sequences).
Cf. A115350 (termination of the aliquot sequences).
Cf. A098009, A098010 (records of "length" of aliquot sequences).
Cf. A290141, A290142 (records of maximum term of aliquot sequences).
Aliquot sequences starting at various numbers: A000004 (0), A000007 (1), A033322 (2), A010722 (6), A143090 (12), A143645 (24), A010867 (28), A008885 (30), A143721 (38), A008886 (42), A143722 (48), A143723 (52), A008887 (60), A143733 (62), A143737 (68), A143741 (72), A143754 (75), A143755 (80), A143756 (81), A143757 (82), A143758 (84), A143759 (86), A143767 (87), A143846 (88), A143847 (96), A143919 (100), A008888 (138), A008889 (150), A008890 (168), A008891 (180), A203777 (220), A008892 (276), A014360 (552), A014361 (564), A074907 (570), A014362 (660), A269542 (702), A045477 (840), A014363 (966), A014364 (1074), A014365 (1134), A074906 (1521), A143930 (3630), A072891 (12496), A072890 (14316), A171103 (46758), A072892 (1264460).

Programs

  • PARI
    A347769_list(N)=print1(0, ", "); if(N>0, print1(1, ", ")); v=[0, 1]; b=1; for(n=2, N, if(setsearch(Set(v), sigma(b)-b), k=1; while(k<=n, if(!setsearch(Set(v), k), b=k; k=n+1, k++)), b=sigma(b)-b); print1(b, ", "); v=concat(v, b))
Showing 1-6 of 6 results.