cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A131885 a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) for n >= 4 starting with a(0) = 1, a(1) = 2, a(2) = 4, and a(3) = 6.

Original entry on oeis.org

1, 2, 4, 6, 8, 12, 24, 56, 128, 272, 544, 1056, 2048, 4032, 8064, 16256, 32768, 65792, 131584, 262656, 524288, 1047552, 2095104, 4192256, 8388608, 16781312, 33562624, 67117056, 134217728, 268419072, 536838144, 1073709056, 2147483648, 4295032832, 8590065664
Offset: 0

Views

Author

Paul Curtz, Oct 25 2007

Keywords

Programs

  • Mathematica
    Join[{1},LinearRecurrence[{4,-6,4},{2,4,6},60]] (* Harvey P. Dale, Jul 07 2011 *)

Formula

Binomial transform of 1, 1, 1, -1.
G.f.: (-1 + 2*x - 2*x^2 + 2*x^3)/(2*x - 1)/(2*x^2 - 2*x + 1). - R. J. Mathar, Nov 14 2007
a(n) = 2*A038504(n) for n > 0. - R. J. Mathar, Jul 17 2009
G.f.: 1/2*(1 - 1/(2*x-1) + x*Q(0)/(1-x)), where Q(k) = 1 + 1/(1 - x*(k+1)/(x*(k+2) + 1/Q(k+1) )) (continued fraction). - Sergei N. Gladkovskii, Sep 27 2013
a(n) = Sum_{j=0..n} binomial(n, j)*(-1)^binomial(j, 3); this is the case m=3 and z=-1 of f(m,n)(z) = Sum_{j=0..n} binomial(n, j)*z^binomial(j, m). See Dilcher and Ulas. - Michel Marcus, Sep 01 2020

Extensions

More terms from Harvey P. Dale, Jul 07 2011