A131905
Integers x such that sigma_2(k)=sigma_2(x) for some 0A001157=sigma_2 is the sum of squares of divisors.
7, 26, 35, 47, 77, 91, 119, 130, 133, 141, 157, 161, 175, 182, 203, 215, 217, 249, 259, 282, 286, 287, 301, 329, 371, 385, 413, 423, 427, 434, 442, 455, 469, 471, 494, 497, 511, 517, 553, 581, 595, 598, 611, 623, 650, 651, 665, 679, 707, 721, 749, 754, 763, 785
Offset: 1
Examples
This sequence contains 35, because sigma_2(35) = 1^2+5^2+7^2+35^2 = 1+25+49+1225 = 1300, and the sum of the squares of the divisors of 30<35 is sigma_2(30) = 1+4+9+25+36+100+225+900 = 1300.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
N:= 100: # to get a(1)..a(N) count:= 0: Res:= NULL: for n from 1 while count < N do v:= numtheory:-sigma[2](n); if assigned(V[v]) then count:= count+1; Res:= Res, n; else V[v]:= n fi od: Res; # Robert Israel, Mar 30 2018
-
Mathematica
Clear[tmp]; First@Transpose[ Function[n, (If[Head[ #1] === tmp, #1 = n; Unevaluated[Sequence[]], {n, #1}] & )[tmp[DivisorSigma[2, n]]]] /@ Range[500]] Module[{nn=800,ds2,c},ds2=DivisorSigma[2,Range[nn]];Table[c=TakeDrop[Take[ds2,n],-1];If[ MemberQ[c[[2]],c[[1,1]]],n,Nothing],{n,nn}]] (* Harvey P. Dale, May 22 2024 *)
-
PARI
isok(n) = {sn = sigma(n,2); for (k=1, n-1, if (sigma(k,2) == sn, return (1)););} \\ Michel Marcus, Apr 03 2015
Formula
a(n) = n-th element of {x: there exists some k with 0A001157=sigma_2 is the sum of squares of divisors.
Extensions
a(37)-a(54) from Michel Marcus, Apr 03 2015
Edited by Danny Rorabaugh, Apr 03 2015