cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A131965 a(n) = 1 + Sum_{i=2..n-1} n*a(i).

Original entry on oeis.org

1, 1, 1, 4, 21, 131, 943, 7701, 70409, 712891, 7921011, 95844233, 1254688141, 17670191319, 266412115271, 4281623281141, 73073037331473, 1319881736799731, 25155393101359579, 504505383866156001, 10621165976129600021, 234196709773657680463, 5397676549069062730671
Offset: 0

Views

Author

Thomas Wieder, Aug 02 2007

Keywords

Comments

a(n) = 1 + Sum_{i=2..n-1} 1*a(i) = 2^n; a(n) = 1 + Sum_{i=2..n-1} 2*a(i) = 3^n; etc. It seems that a(n+1)/(n*a(n)) -> 1 for n -> oo. [Comment corrected by Emeric Deutsch, Aug 10 2007]
Let M(n) denote the n X n matrix with ones along the subdiagonal, ones everywhere above the main diagonal, the integers 4, 5, etc., along the main diagonal, and zeros everywhere else. Then a(n) equals the permanent of M(n-2) for n >= 3. - John M. Campbell, Apr 20 2021

Examples

			a(4)=21 because 1 + 4*1 + 4*4 = 21.
		

Crossrefs

Programs

  • Magma
    m:=25; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( (-8*(1+x) + 2*(3-x)*Exp(x) + (4+3*x^2-x^3))/(2*(1-x)^3) )); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Mar 09 2019
    
  • Maple
    rctlnn := proc(n::nonnegint) local j; option remember; if n = 0 then 0; else 1+add(n*procname(j), j=2..n-1); end if; end proc:
    a[1] := 1; for n from 2 to 18 do a[n] := 1+sum(n*a[i], i = 2 .. n-1) end do: seq(a[n], n = 1 .. 18); # Emeric Deutsch, Aug 10 2007
    # third Maple program:
    a:= proc(n) option remember;
          1+add(n*a(i), i=2..n-1)
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Sep 03 2020
  • Mathematica
    a[1] = a[2] = 1; a[n_] := a[n] = (n^2*a[n-1]-1)/(n-1); Array[a, 30] (* Jean-François Alcover, Feb 08 2017 *)
  • Sage
    m = 25; T = taylor((-8*(1+x) + 2*(3-x)*exp(x) + (4+3*x^2-x^3))/(2*(1-x)^3), x, 0, m); [factorial(n)*T.coefficient(x, n) for n in (0..m)] # G. C. Greubel, Mar 09 2019

Formula

a(n) = 1 + Sum_{i=2..n-1} n*a(i).
E.g.f.: 1/2 * (x + (2*exp(x)-5)/(x-1)^2 -5/(x-1)).
Asymptotic expansion: a(n)/n! = (5/2 + e)*n^2 + O(n).
a(n) = (n+1)*a(n-1) + a(n-2) + ... + a(2), e.g., a(5) = 6*21 + 4 + 1 = 131.

Extensions

More terms from Emeric Deutsch, Aug 10 2007
a(0)=1 prepended and edited by Alois P. Heinz, Sep 03 2020