A131965 a(n) = 1 + Sum_{i=2..n-1} n*a(i).
1, 1, 1, 4, 21, 131, 943, 7701, 70409, 712891, 7921011, 95844233, 1254688141, 17670191319, 266412115271, 4281623281141, 73073037331473, 1319881736799731, 25155393101359579, 504505383866156001, 10621165976129600021, 234196709773657680463, 5397676549069062730671
Offset: 0
Keywords
Examples
a(4)=21 because 1 + 4*1 + 4*4 = 21.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..449
Programs
-
Magma
m:=25; R
:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( (-8*(1+x) + 2*(3-x)*Exp(x) + (4+3*x^2-x^3))/(2*(1-x)^3) )); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Mar 09 2019 -
Maple
rctlnn := proc(n::nonnegint) local j; option remember; if n = 0 then 0; else 1+add(n*procname(j), j=2..n-1); end if; end proc: a[1] := 1; for n from 2 to 18 do a[n] := 1+sum(n*a[i], i = 2 .. n-1) end do: seq(a[n], n = 1 .. 18); # Emeric Deutsch, Aug 10 2007 # third Maple program: a:= proc(n) option remember; 1+add(n*a(i), i=2..n-1) end: seq(a(n), n=0..30); # Alois P. Heinz, Sep 03 2020
-
Mathematica
a[1] = a[2] = 1; a[n_] := a[n] = (n^2*a[n-1]-1)/(n-1); Array[a, 30] (* Jean-François Alcover, Feb 08 2017 *)
-
Sage
m = 25; T = taylor((-8*(1+x) + 2*(3-x)*exp(x) + (4+3*x^2-x^3))/(2*(1-x)^3), x, 0, m); [factorial(n)*T.coefficient(x, n) for n in (0..m)] # G. C. Greubel, Mar 09 2019
Formula
a(n) = 1 + Sum_{i=2..n-1} n*a(i).
E.g.f.: 1/2 * (x + (2*exp(x)-5)/(x-1)^2 -5/(x-1)).
Asymptotic expansion: a(n)/n! = (5/2 + e)*n^2 + O(n).
a(n) = (n+1)*a(n-1) + a(n-2) + ... + a(2), e.g., a(5) = 6*21 + 4 + 1 = 131.
Extensions
More terms from Emeric Deutsch, Aug 10 2007
a(0)=1 prepended and edited by Alois P. Heinz, Sep 03 2020
Comments