cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A132044 Triangle T(n,k) = binomial(n, k) - 1 with T(n,0) = T(n,n) = 1, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 3, 5, 3, 1, 1, 4, 9, 9, 4, 1, 1, 5, 14, 19, 14, 5, 1, 1, 6, 20, 34, 34, 20, 6, 1, 1, 7, 27, 55, 69, 55, 27, 7, 1, 1, 8, 35, 83, 125, 125, 83, 35, 8, 1, 1, 9, 44, 119, 209, 251, 209, 119, 44, 9, 1
Offset: 0

Views

Author

Gary W. Adamson, Aug 08 2007

Keywords

Comments

Row sums = A132045: (1, 2, 3, 6, 13, 28, 59, ...).
The triangle sequences having the form T(n,k,q) = binomial(n, k) + q^n*binomial(n-2, k-1) - 1 have the row sums Sum_{k=0..n} T(n,k,q) = 2^(n-2)*q^n + 2^n - (n-1) - (5/4)*[n=0] -(q/2)*[n=1]. - G. C. Greubel, Feb 12 2021

Examples

			First few rows of the triangle:
  1;
  1, 1;
  1, 1,  1;
  1, 2,  2,  1;
  1, 3,  5,  3,  1;
  1, 4,  9,  9,  4,  1;
  1, 5, 14, 19, 14,  5,  1;
  1, 6, 20, 34, 34, 20,  6, 1;
  1, 7, 27, 55, 69, 55, 27, 7, 1;
		

Crossrefs

Cf. this sequence (q=0), A173075 (q=1), A173046 (q=2), A173047 (q=3).

Programs

  • Magma
    T:= func< n,k,q | k eq 0 or k eq n select 1 else Binomial(n,k) + q^n*Binomial(n-2,k-1) -1 >;
    [T(n,k,0): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 12 2021
  • Mathematica
    T[n_, k_]:= If[k==0 || k==n, 1, Binomial[n, k] - 1];
    Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* Roger L. Bagula, Feb 08 2010 *)
  • Sage
    def T(n,k,q): return 1 if (k==0 or k==n) else binomial(n,k) + q^n*binomial(n-2,k-1) -1
    flatten([[T(n,k,0) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 12 2021
    

Formula

T(n, k) = A007318(n,k) + A103451(n,k) - A000012(n,k), an infinite lower triangular matrix.
T(n, k) = binomial(n, k) - 1, with T(n,0) = T(n,n) = 1. - Roger L. Bagula, Feb 08 2010
From G. C. Greubel, Feb 12 2021: (Start)
T(n, k, q) = binomial(n, k) + q^n*binomial(n-2, k-1) - 1 with T(n, 0) = T(n, n) = 1 and q = 0.
Sum_{k=0..n} T(n, k, 0) = 2^n - (n-1) - [n=0]. (End)