A132044 Triangle T(n,k) = binomial(n, k) - 1 with T(n,0) = T(n,n) = 1, read by rows.
1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 3, 5, 3, 1, 1, 4, 9, 9, 4, 1, 1, 5, 14, 19, 14, 5, 1, 1, 6, 20, 34, 34, 20, 6, 1, 1, 7, 27, 55, 69, 55, 27, 7, 1, 1, 8, 35, 83, 125, 125, 83, 35, 8, 1, 1, 9, 44, 119, 209, 251, 209, 119, 44, 9, 1
Offset: 0
Examples
First few rows of the triangle: 1; 1, 1; 1, 1, 1; 1, 2, 2, 1; 1, 3, 5, 3, 1; 1, 4, 9, 9, 4, 1; 1, 5, 14, 19, 14, 5, 1; 1, 6, 20, 34, 34, 20, 6, 1; 1, 7, 27, 55, 69, 55, 27, 7, 1;
Links
- G. C. Greubel, Rows n = 0..100 of the triangle, flattened
Crossrefs
Programs
-
Magma
T:= func< n,k,q | k eq 0 or k eq n select 1 else Binomial(n,k) + q^n*Binomial(n-2,k-1) -1 >; [T(n,k,0): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 12 2021
-
Mathematica
T[n_, k_]:= If[k==0 || k==n, 1, Binomial[n, k] - 1]; Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* Roger L. Bagula, Feb 08 2010 *)
-
Sage
def T(n,k,q): return 1 if (k==0 or k==n) else binomial(n,k) + q^n*binomial(n-2,k-1) -1 flatten([[T(n,k,0) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 12 2021
Formula
T(n, k) = binomial(n, k) - 1, with T(n,0) = T(n,n) = 1. - Roger L. Bagula, Feb 08 2010
From G. C. Greubel, Feb 12 2021: (Start)
T(n, k, q) = binomial(n, k) + q^n*binomial(n-2, k-1) - 1 with T(n, 0) = T(n, n) = 1 and q = 0.
Sum_{k=0..n} T(n, k, 0) = 2^n - (n-1) - [n=0]. (End)
Comments