Original entry on oeis.org
1, 2, 3, 6, 13, 28, 59, 122, 249, 504, 1015, 2038, 4085, 8180, 16371, 32754, 65521, 131056, 262127, 524270, 1048557, 2097132, 4194283, 8388586, 16777193, 33554408, 67108839, 134217702, 268435429, 536870884, 1073741795, 2147483618, 4294967265, 8589934560
Offset: 0
a(4) = 13 = sum of row 4 terms of triangle A132044: (1 + 3 + 5 + 3 + 1).
a(4) = 13 = (1, 4, 6, 4, 1) dot (1, 1, 0, 2, 0) = (1 + 4 + 0 + 8 + 0).
-
[1] cat [2^n -n +1: n in [1..35]]; // G. C. Greubel, Feb 12 2021
-
Table[2^n -(n-1) -Boole[n==0], {n, 0, 35}] (* G. C. Greubel, Feb 12 2021 *)
-
Vec((1-2*x+2*x^3)/((1-x)^2*(1-2*x)) + O(x^100)) \\ Colin Barker, Mar 14 2014
-
[1]+[2^n -n +1 for n in (1..35)] # G. C. Greubel, Feb 12 2021
A173075
T(n,k) = binomial(n, k) - 1 + q^(floor(n/2))*binomial(n-2, k-1) for 0 < k < n with T(n,0) = T(n,n) = 1 and q = 1. Triangle read by rows.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 7, 4, 1, 1, 5, 12, 12, 5, 1, 1, 6, 18, 25, 18, 6, 1, 1, 7, 25, 44, 44, 25, 7, 1, 1, 8, 33, 70, 89, 70, 33, 8, 1, 1, 9, 42, 104, 160, 160, 104, 42, 9, 1, 1, 10, 52, 147, 265, 321, 265, 147, 52, 10, 1
Offset: 0
Triangle begins:
1,
1, 1;
1, 2, 1;
1, 3, 3, 1;
1, 4, 7, 4, 1;
1, 5, 12, 12, 5, 1;
1, 6, 18, 25, 18, 6, 1;
1, 7, 25, 44, 44, 25, 7, 1;
1, 8, 33, 70, 89, 70, 33, 8, 1;
1, 9, 42, 104, 160, 160, 104, 42, 9, 1;
1, 10, 52, 147, 265, 321, 265, 147, 52, 10, 1;
...
Row sums: {1, 2, 4, 8, 17, 36, 75, 154, 313, 632, 1271, ...}.
-
T:= func< n,k,p | k eq 0 or k eq n select 1 else Binomial(n,k) + p^n*Binomial(n-2,k-1) -1 >;
[T(n,k,1): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 12 2021
-
T[n_, m_]:= If[m==0 || m==n, 1, Binomial[n, m] - 1 + Binomial[n-2, m-1]];
Table[T[n, m], {n, 0, 10}, {m, 0, n}]//Flatten
-
T(n,k)={if(k<=0||k>=n, k==0||k==n, binomial(n,k) - 1 + binomial(n-2, k-1))} \\ Andrew Howroyd, Jan 22 2020
-
def T(n,k,p): return 1 if (k==0 or k==n) else binomial(n,k) + p^n*binomial(n-2,k-1) -1
flatten([[T(n,k,1) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 12 2021
A132735
Triangle T(n,k) = binomial(n,k) + 1 with T(n,0) = T(n,n) = 1, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 3, 1, 1, 4, 4, 1, 1, 5, 7, 5, 1, 1, 6, 11, 11, 6, 1, 1, 7, 16, 21, 16, 7, 1, 1, 8, 22, 36, 36, 22, 8, 1, 1, 9, 29, 57, 71, 57, 29, 9, 1, 1, 10, 37, 85, 127, 127, 85, 37, 10, 1, 1, 11, 46, 121, 211, 253, 211, 121, 46, 11, 1, 1, 12, 56, 166, 331, 463, 463, 331, 166, 56, 12, 1
Offset: 0
First few rows of the triangle are:
1;
1, 1;
1, 3, 1;
1, 4, 4, 1;
1, 5, 7, 5, 1;
1, 6, 11, 11, 6, 1;
1, 7, 16, 21, 16, 7, 1;
...
-
T:= func< n,k | k eq 0 or k eq n select 1 else Binomial(n,k) + 1 >;
[T(n,k): k in [0..n], n in [0..12]]; // _G. C. Greubel, Feb 14 2021
-
T[n_, k_]:= If[k==0||k==n, 1, Binomial[n,k] +1];
Table[T[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Feb 14 2021 *)
-
def T(n, k): return 1 if (k==0 or k==n) else binomial(n, k) + 1
flatten([[T(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 14 2021
A173740
Triangle T(n,k) = binomial(n,k) + 2 for 1 <= k <= n - 1, n >= 2, and T(n,0) = T(n,n) = 1 for n >= 0, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 4, 1, 1, 5, 5, 1, 1, 6, 8, 6, 1, 1, 7, 12, 12, 7, 1, 1, 8, 17, 22, 17, 8, 1, 1, 9, 23, 37, 37, 23, 9, 1, 1, 10, 30, 58, 72, 58, 30, 10, 1, 1, 11, 38, 86, 128, 128, 86, 38, 11, 1, 1, 12, 47, 122, 212, 254, 212, 122, 47, 12, 1, 1, 13, 57, 167, 332, 464, 464, 332, 167, 57, 13, 1
Offset: 0
Triangle begins:
1;
1, 1;
1, 4, 1;
1, 5, 5, 1;
1, 6, 8, 6, 1;
1, 7, 12, 12, 7, 1;
1, 8, 17, 22, 17, 8, 1;
1, 9, 23, 37, 37, 23, 9, 1;
1, 10, 30, 58, 72, 58, 30, 10, 1;
1, 11, 38, 86, 128, 128, 86, 38, 11, 1;
1, 12, 47, 122, 212, 254, 212, 122, 47, 12, 1;
...
-
T:= func< n,k | k eq 0 or k eq n select 1 else Binomial(n,k) + 2 >;
[T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 13 2021
-
T[n_, m_] = Binomial[n, m] + 2*If[m*(n - m) > 0, 1, 0];
Flatten[Table[T[n, m], {n, 0, 10}, {m, 0, n}]]
-
T(n,k) := if k = 0 or k = n then 1 else binomial(n, k) + 2$
create_list(T(n, k), n, 0, 12, k, 0, n); /* Franck Maminirina Ramaharo, Dec 08 2018 */
-
def T(n, k): return 1 if (k==0 or k==n) else binomial(n, k) + 2
flatten([[T(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 13 2021
A132731
Triangle T(n,k) = 2 * binomial(n,k) - 2 with T(n,0) = T(n,n) = 1, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 4, 4, 1, 1, 6, 10, 6, 1, 1, 8, 18, 18, 8, 1, 1, 10, 28, 38, 28, 10, 1, 1, 12, 40, 68, 68, 40, 12, 1, 1, 14, 54, 110, 138, 110, 54, 14, 1, 1, 16, 70, 166, 250, 250, 166, 70, 16, 1, 1, 18, 88, 238, 418, 502, 418, 238, 88, 18, 1
Offset: 0
First few rows of the triangle are:
1;
1, 1;
1, 2, 1;
1, 4, 4, 1;
1, 6, 10, 6, 1;
1, 8, 18, 18, 8, 1;
1, 10, 28, 38, 28, 10, 1;
1, 12, 40, 68, 68, 40, 12, 1;
...
-
T:= func< n,k | k eq 0 or k eq n select 1 else 2*Binomial(n,k) - 2 >;
[T(n,k): k in [0..n], n in [0..12]]; // _G. C. Greubel, Feb 14 2021
-
T[n_, k_]:= If[k==0 || k==n, 1, 2*Binomial[n, k] - 2];
Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Feb 14 2021 *)
-
t(n,k) = 2*binomial(n, k) + ((k==0) || (k==n)) - 2*(k<=n); \\ Michel Marcus, Feb 12 2014
-
def T(n, k): return 1 if (k==0 or k==n) else 2*binomial(n, k) - 2
flatten([[T(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 14 2021
A173046
Triangle T(n, k, q) = binomial(n, k) + q^n*binomial(n-2, k-1) - 1 with T(n, 0) = T(n, n) = 1 and q = 2, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 5, 1, 1, 10, 10, 1, 1, 19, 37, 19, 1, 1, 36, 105, 105, 36, 1, 1, 69, 270, 403, 270, 69, 1, 1, 134, 660, 1314, 1314, 660, 134, 1, 1, 263, 1563, 3895, 5189, 3895, 1563, 263, 1, 1, 520, 3619, 10835, 18045, 18045, 10835, 3619, 520, 1, 1, 1033, 8236, 28791, 57553, 71931, 57553, 28791, 8236, 1033, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, 5, 1;
1, 10, 10, 1;
1, 19, 37, 19, 1;
1, 36, 105, 105, 36, 1;
1, 69, 270, 403, 270, 69, 1;
1, 134, 660, 1314, 1314, 660, 134, 1;
1, 263, 1563, 3895, 5189, 3895, 1563, 263, 1;
1, 520, 3619, 10835, 18045, 18045, 10835, 3619, 520, 1;
1, 1033, 8236, 28791, 57553, 71931, 57553, 28791, 8236, 1033, 1;
-
T:= func< n,k,q | k eq 0 or k eq n select 1 else Binomial(n,k) + q^n*Binomial(n-2,k-1) -1 >;
[T(n,k,2): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 16 2021
-
T[n_, m_, q_]:= If[k==0 || k==n, 1, Binomial[n, k] +(q^n)*Binomial[n-2, k-1] -1];
Table[T[n,k,2], {n,0,12}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Feb 16 2021 *)
-
def T(n,k,q): return 1 if (k==0 or k==n) else binomial(n,k) + q^n*binomial(n-2,k-1) -1
flatten([[T(n,k,2) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 16 2021
A173047
Triangle T(n, k, q) = binomial(n, k) + q^n*binomial(n-2, k-1) - 1 with T(n, 0) = T(n, n) = 1 and q = 3, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 10, 1, 1, 29, 29, 1, 1, 84, 167, 84, 1, 1, 247, 738, 738, 247, 1, 1, 734, 2930, 4393, 2930, 734, 1, 1, 2193, 10955, 21904, 21904, 10955, 2193, 1, 1, 6568, 39393, 98470, 131289, 98470, 39393, 6568, 1, 1, 19691, 137816, 413426, 689030, 689030, 413426, 137816, 19691, 1
Offset: 0
Ttiangle begins as:
1;
1, 1;
1, 10, 1;
1, 29, 29, 1;
1, 84, 167, 84, 1;
1, 247, 738, 738, 247, 1;
1, 734, 2930, 4393, 2930, 734, 1;
1, 2193, 10955, 21904, 21904, 10955, 2193, 1;
1, 6568, 39393, 98470, 131289, 98470, 39393, 6568, 1;
1, 19691, 137816, 413426, 689030, 689030, 413426, 137816, 19691, 1;
-
T:= func< n,k,q | k eq 0 or k eq n select 1 else Binomial(n,k) + q^n*Binomial(n-2,k-1) -1 >;
[T(n,k,3): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 16 2021
-
T[n_, k_, q_]:= If[k==0 || k==n, 1, Binomial[n, k] +(q^n)*Binomial[n-2, k-1] -1];
Table[T[n,k,3], {n,0,12}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Feb 16 2021 *)
-
def T(n,k,q): return 1 if (k==0 or k==n) else binomial(n,k) + q^n*binomial(n-2,k-1) -1
flatten([[T(n,k,3) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 16 2021
A173741
T(n,k) = binomial(n,k) + 4 for 1 <= k <= n - 1, n >= 2, and T(n,0) = T(n,n) = 1 for n >= 0, triangle read by rows.
Original entry on oeis.org
1, 1, 1, 1, 6, 1, 1, 7, 7, 1, 1, 8, 10, 8, 1, 1, 9, 14, 14, 9, 1, 1, 10, 19, 24, 19, 10, 1, 1, 11, 25, 39, 39, 25, 11, 1, 1, 12, 32, 60, 74, 60, 32, 12, 1, 1, 13, 40, 88, 130, 130, 88, 40, 13, 1, 1, 14, 49, 124, 214, 256, 214, 124, 49, 14, 1, 1, 15, 59, 169, 334, 466, 466, 334, 169, 59, 15, 1
Offset: 0
Triangle begins:
1;
1, 1;
1, 6, 1;
1, 7, 7, 1;
1, 8, 10, 8, 1;
1, 9, 14, 14, 9, 1;
1, 10, 19, 24, 19, 10, 1;
1, 11, 25, 39, 39, 25, 11, 1;
1, 12, 32, 60, 74, 60, 32, 12, 1;
1, 13, 40, 88, 130, 130, 88, 40, 13, 1;
1, 14, 49, 124, 214, 256, 214, 124, 49, 14, 1;
...
-
T:= func< n,k | k eq 0 or k eq n select 1 else Binomial(n,k) + 4 >;
[T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 13 2021
-
T[n_, m_] = Binomial[n, m] + 4*If[m*(n - m) > 0, 1, 0];
Flatten[Table[T[n, m], {n, 0, 10}, {m, 0, n}]]
-
T(n,k) := if k = 0 or k = n then 1 else binomial(n, k) + 4$
create_list(T(n, k), n, 0, 12, k, 0, n); /* Franck Maminirina Ramaharo, Dec 09 2018 */
-
def T(n, k): return 1 if (k==0 or k==n) else binomial(n, k) + 4
flatten([[T(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 13 2021
A173742
Triangle T(n,k) = binomial(n,k) + 6 with T(n,0) = T(n,n) = 1 for n >= 0, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 8, 1, 1, 9, 9, 1, 1, 10, 12, 10, 1, 1, 11, 16, 16, 11, 1, 1, 12, 21, 26, 21, 12, 1, 1, 13, 27, 41, 41, 27, 13, 1, 1, 14, 34, 62, 76, 62, 34, 14, 1, 1, 15, 42, 90, 132, 132, 90, 42, 15, 1, 1, 16, 51, 126, 216, 258, 216, 126, 51, 16, 1, 1, 17, 61, 171, 336, 468, 468, 336, 171, 61, 17, 1
Offset: 0
Triangle begins:
1;
1, 1;
1, 8, 1;
1, 9, 9, 1;
1, 10, 12, 10, 1;
1, 11, 16, 16, 11, 1;
1, 12, 21, 26, 21, 12, 1;
1, 13, 27, 41, 41, 27, 13, 1;
1, 14, 34, 62, 76, 62, 34, 14, 1;
1, 15, 42, 90, 132, 132, 90, 42, 15, 1;
1, 16, 51, 126, 216, 258, 216, 126, 51, 16, 1;
...
-
T:= func< n,k | k eq 0 or k eq n select 1 else Binomial(n,k) +6 >;
[T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 13 2021
-
T[n_, m_] = Binomial[n, m] + 6*If[m*(n - m) > 0, 1, 0];
Flatten[Table[T[n, m], {n, 0, 10}, {m, 0, n}]]
-
T(n,k) := if k = 0 or k = n then 1 else binomial(n, k) + 6$
create_list(T(n, k), n, 0, 12, k, 0, n); /* Franck Maminirina Ramaharo, Dec 09 2018 */
-
def T(n, k): return 1 if (k==0 or k==n) else binomial(n, k) + 6
flatten([[T(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 13 2021
A132729
Triangle T(n, k) = 2*binomial(n, k) - 3 with T(n, 0) = T(n, n) = 1, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 3, 3, 1, 1, 5, 9, 5, 1, 1, 7, 17, 17, 7, 1, 1, 9, 27, 37, 27, 9, 1, 1, 11, 39, 67, 67, 39, 11, 1, 1, 13, 53, 109, 137, 109, 53, 13, 1, 1, 15, 69, 165, 249, 249, 165, 69, 15, 1, 1, 17, 87, 237, 417, 501, 417, 237, 87, 17, 1, 1, 19, 107, 327, 657, 921, 921, 657, 327, 107, 19, 1
Offset: 0
First few rows of the triangle are:
1;
1, 1;
1, 1, 1;
1, 3, 3, 1;
1, 5, 9, 5, 1;
1, 7, 17, 17, 7, 1;
1, 9, 27, 37, 26, 9, 1;
1, 11, 39, 67, 67, 39, 11, 1;
-
T:= func< n,k | k eq 0 or k eq n select 1 else 2*Binomial(n,k) - 3 >;
[T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 13 2021
-
T[n_, k_]:= If[k==0 || k==n, 1, 2*Binomial[n, k] - 3];
Table[T[n, k], {n, 0, 10}, {k, 0, n}]//Flatten (* G. C. Greubel, Feb 13 2021 *)
-
def T(n,k): return 1 if (k==0 or k==n) else 2*binomial(n,k) - 3
flatten([[T(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 13 2021
Showing 1-10 of 14 results.
Comments