A132044
Triangle T(n,k) = binomial(n, k) - 1 with T(n,0) = T(n,n) = 1, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 3, 5, 3, 1, 1, 4, 9, 9, 4, 1, 1, 5, 14, 19, 14, 5, 1, 1, 6, 20, 34, 34, 20, 6, 1, 1, 7, 27, 55, 69, 55, 27, 7, 1, 1, 8, 35, 83, 125, 125, 83, 35, 8, 1, 1, 9, 44, 119, 209, 251, 209, 119, 44, 9, 1
Offset: 0
First few rows of the triangle:
1;
1, 1;
1, 1, 1;
1, 2, 2, 1;
1, 3, 5, 3, 1;
1, 4, 9, 9, 4, 1;
1, 5, 14, 19, 14, 5, 1;
1, 6, 20, 34, 34, 20, 6, 1;
1, 7, 27, 55, 69, 55, 27, 7, 1;
-
T:= func< n,k,q | k eq 0 or k eq n select 1 else Binomial(n,k) + q^n*Binomial(n-2,k-1) -1 >;
[T(n,k,0): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 12 2021
-
T[n_, k_]:= If[k==0 || k==n, 1, Binomial[n, k] - 1];
Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* Roger L. Bagula, Feb 08 2010 *)
-
def T(n,k,q): return 1 if (k==0 or k==n) else binomial(n,k) + q^n*binomial(n-2,k-1) -1
flatten([[T(n,k,0) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 12 2021
A167763
Pendular triangle (p=0), read by rows, where row n is formed from row n-1 by the recurrence: if n > 2k, T(n,k) = T(n,n-k) + T(n-1,k), otherwise T(n,k) = T(n,n-1-k) + p*T(n-1,k), for n >= k <= 0, with T(n,0) = 1 and T(n,n) = 0^n.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 3, 1, 0, 1, 4, 7, 4, 1, 0, 1, 5, 12, 12, 5, 1, 0, 1, 6, 18, 30, 18, 6, 1, 0, 1, 7, 25, 55, 55, 25, 7, 1, 0, 1, 8, 33, 88, 143, 88, 33, 8, 1, 0, 1, 9, 42, 130, 273, 273, 130, 42, 9, 1, 0, 1, 10, 52, 182, 455, 728, 455, 182, 52, 10, 1, 0
Offset: 0
Triangle begins:
1;
1, 0;
1, 1, 0;
1, 2, 1, 0;
1, 3, 3, 1, 0;
1, 4, 7, 4, 1, 0;
1, 5, 12, 12, 5, 1, 0; ...
-
function T(n,k,p)
if k lt 0 or n lt k then return 0;
elif k eq 0 then return 1;
elif k eq n then return 0;
elif n gt 2*k then return T(n,n-k,p) + T(n-1,k,p);
else return T(n,n-k-1,p) + p*T(n-1,k,p);
end if;
return T;
end function;
[T(n,k,0): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 17 2021
-
T[n_, k_, p_]:= T[n,k,p] = If[nG. C. Greubel, Feb 17 2021 *)
-
{T(n,k)=if(k==0,1,if(n==k,0,if(n>2*k,binomial(n+k+1,k)*(n-2*k+1)/(n+k+1),T(n,n-1-k))))} \\ Paul D. Hanna, Nov 12 2009
-
@CachedFunction
def T(n, k, p):
if (k<0 or n2*k): return T(n,n-k,p) + T(n-1,k,p)
else: return T(n, n-k-1, p) + p*T(n-1, k, p)
flatten([[T(n, k, 0) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 17 2021
A173046
Triangle T(n, k, q) = binomial(n, k) + q^n*binomial(n-2, k-1) - 1 with T(n, 0) = T(n, n) = 1 and q = 2, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 5, 1, 1, 10, 10, 1, 1, 19, 37, 19, 1, 1, 36, 105, 105, 36, 1, 1, 69, 270, 403, 270, 69, 1, 1, 134, 660, 1314, 1314, 660, 134, 1, 1, 263, 1563, 3895, 5189, 3895, 1563, 263, 1, 1, 520, 3619, 10835, 18045, 18045, 10835, 3619, 520, 1, 1, 1033, 8236, 28791, 57553, 71931, 57553, 28791, 8236, 1033, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, 5, 1;
1, 10, 10, 1;
1, 19, 37, 19, 1;
1, 36, 105, 105, 36, 1;
1, 69, 270, 403, 270, 69, 1;
1, 134, 660, 1314, 1314, 660, 134, 1;
1, 263, 1563, 3895, 5189, 3895, 1563, 263, 1;
1, 520, 3619, 10835, 18045, 18045, 10835, 3619, 520, 1;
1, 1033, 8236, 28791, 57553, 71931, 57553, 28791, 8236, 1033, 1;
-
T:= func< n,k,q | k eq 0 or k eq n select 1 else Binomial(n,k) + q^n*Binomial(n-2,k-1) -1 >;
[T(n,k,2): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 16 2021
-
T[n_, m_, q_]:= If[k==0 || k==n, 1, Binomial[n, k] +(q^n)*Binomial[n-2, k-1] -1];
Table[T[n,k,2], {n,0,12}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Feb 16 2021 *)
-
def T(n,k,q): return 1 if (k==0 or k==n) else binomial(n,k) + q^n*binomial(n-2,k-1) -1
flatten([[T(n,k,2) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 16 2021
A173047
Triangle T(n, k, q) = binomial(n, k) + q^n*binomial(n-2, k-1) - 1 with T(n, 0) = T(n, n) = 1 and q = 3, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 10, 1, 1, 29, 29, 1, 1, 84, 167, 84, 1, 1, 247, 738, 738, 247, 1, 1, 734, 2930, 4393, 2930, 734, 1, 1, 2193, 10955, 21904, 21904, 10955, 2193, 1, 1, 6568, 39393, 98470, 131289, 98470, 39393, 6568, 1, 1, 19691, 137816, 413426, 689030, 689030, 413426, 137816, 19691, 1
Offset: 0
Ttiangle begins as:
1;
1, 1;
1, 10, 1;
1, 29, 29, 1;
1, 84, 167, 84, 1;
1, 247, 738, 738, 247, 1;
1, 734, 2930, 4393, 2930, 734, 1;
1, 2193, 10955, 21904, 21904, 10955, 2193, 1;
1, 6568, 39393, 98470, 131289, 98470, 39393, 6568, 1;
1, 19691, 137816, 413426, 689030, 689030, 413426, 137816, 19691, 1;
-
T:= func< n,k,q | k eq 0 or k eq n select 1 else Binomial(n,k) + q^n*Binomial(n-2,k-1) -1 >;
[T(n,k,3): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 16 2021
-
T[n_, k_, q_]:= If[k==0 || k==n, 1, Binomial[n, k] +(q^n)*Binomial[n-2, k-1] -1];
Table[T[n,k,3], {n,0,12}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Feb 16 2021 *)
-
def T(n,k,q): return 1 if (k==0 or k==n) else binomial(n,k) + q^n*binomial(n-2,k-1) -1
flatten([[T(n,k,3) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 16 2021
A173076
Triangle T(n, k, q) = binomial(n, k) - 1 + q^(floor(n/2))*binomial(n-2, k-1) with T(n, 0, q) = T(n, n, q) = 1 and q = 2, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 3, 1, 1, 4, 4, 1, 1, 7, 13, 7, 1, 1, 8, 21, 21, 8, 1, 1, 13, 46, 67, 46, 13, 1, 1, 14, 60, 114, 114, 60, 14, 1, 1, 23, 123, 295, 389, 295, 123, 23, 1, 1, 24, 147, 419, 685, 685, 419, 147, 24, 1, 1, 41, 300, 1015, 2001, 2491, 2001, 1015, 300, 41, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, 3, 1;
1, 4, 4, 1;
1, 7, 13, 7, 1;
1, 8, 21, 21, 8, 1;
1, 13, 46, 67, 46, 13, 1;
1, 14, 60, 114, 114, 60, 14, 1;
1, 23, 123, 295, 389, 295, 123, 23, 1;
1, 24, 147, 419, 685, 685, 419, 147, 24, 1;
1, 41, 300, 1015, 2001, 2491, 2001, 1015, 300, 41, 1;
-
T:= func< n,k,q | k eq 0 or k eq n select 1 else Binomial(n,k) + q^(Floor(n/2))*Binomial(n-2,k-1) -1 >;
[T(n,k,2): k in [0..n], n in [0..12]]; // G. C. Greubel, Jul 09 2021
-
T[n_, k_, q_]:= If[k==0 || k==n, 1, Binomial[n, k] - 1 + q^(Floor[n/2])*Binomial[n-2, k-1]];
Table[T[n, k, 2], {n,0,10}, {k,0,n}]//Flatten
-
def T(n,k,q): return 1 if (k==0 or k==n) else binomial(n,k) + q^(n//2)*binomial(n-2,k-1) -1
flatten([[T(n,k,1) for k in (0..n)] for n in (0..12)])
A173077
Triangle T(n, k, q) = binomial(n, k) - 1 + q^floor(n/2)*binomial(n-2, k-1) with T(n, 0, q) = T(n, n, q) = 1 and q = 3, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 4, 1, 1, 5, 5, 1, 1, 12, 23, 12, 1, 1, 13, 36, 36, 13, 1, 1, 32, 122, 181, 122, 32, 1, 1, 33, 155, 304, 304, 155, 33, 1, 1, 88, 513, 1270, 1689, 1270, 513, 88, 1, 1, 89, 602, 1784, 2960, 2960, 1784, 602, 89, 1, 1, 252, 1988, 6923, 13817, 17261, 13817, 6923, 1988, 252, 1
Offset: 0
Triangle starts:
1;
1, 1;
1, 4, 1;
1, 5, 5, 1;
1, 12, 23, 12, 1;
1, 13, 36, 36, 13, 1;
1, 32, 122, 181, 122, 32, 1;
1, 33, 155, 304, 304, 155, 33, 1;
1, 88, 513, 1270, 1689, 1270, 513, 88, 1;
1, 89, 602, 1784, 2960, 2960, 1784, 602, 89, 1;
1, 252, 1988, 6923, 13817, 17261, 13817, 6923, 1988, 252, 1;
...
Row sums: 1, 2, 6, 12, 49, 100, 491, 986, 5433, 10872, 63223, ...
-
T:= func< n,k,q | k eq 0 or k eq n select 1 else Binomial(n,k) + q^(Floor(n/2))*Binomial(n-2,k-1) -1 >;
[T(n,k,3): k in [0..n], n in [0..12]]; // G. C. Greubel, Jul 09 2021
-
T[n_, k_]:= If[k==0 || k==n, 1, Binomial[n, k] - 1 + 3^Floor[n/2] Binomial[n-2, k- 1]];
Table[T[n, k], {n,0,10}, {k,0,n}]//Flatten
-
def T(n,k,q): return 1 if (k==0 or k==n) else binomial(n,k) + q^(n//2)*binomial(n-2,k-1) -1
flatten([[T(n,k,3) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jul 09 2021
Showing 1-6 of 6 results.
Comments