A132044
Triangle T(n,k) = binomial(n, k) - 1 with T(n,0) = T(n,n) = 1, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 3, 5, 3, 1, 1, 4, 9, 9, 4, 1, 1, 5, 14, 19, 14, 5, 1, 1, 6, 20, 34, 34, 20, 6, 1, 1, 7, 27, 55, 69, 55, 27, 7, 1, 1, 8, 35, 83, 125, 125, 83, 35, 8, 1, 1, 9, 44, 119, 209, 251, 209, 119, 44, 9, 1
Offset: 0
First few rows of the triangle:
1;
1, 1;
1, 1, 1;
1, 2, 2, 1;
1, 3, 5, 3, 1;
1, 4, 9, 9, 4, 1;
1, 5, 14, 19, 14, 5, 1;
1, 6, 20, 34, 34, 20, 6, 1;
1, 7, 27, 55, 69, 55, 27, 7, 1;
-
T:= func< n,k,q | k eq 0 or k eq n select 1 else Binomial(n,k) + q^n*Binomial(n-2,k-1) -1 >;
[T(n,k,0): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 12 2021
-
T[n_, k_]:= If[k==0 || k==n, 1, Binomial[n, k] - 1];
Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* Roger L. Bagula, Feb 08 2010 *)
-
def T(n,k,q): return 1 if (k==0 or k==n) else binomial(n,k) + q^n*binomial(n-2,k-1) -1
flatten([[T(n,k,0) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 12 2021
A173075
T(n,k) = binomial(n, k) - 1 + q^(floor(n/2))*binomial(n-2, k-1) for 0 < k < n with T(n,0) = T(n,n) = 1 and q = 1. Triangle read by rows.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 7, 4, 1, 1, 5, 12, 12, 5, 1, 1, 6, 18, 25, 18, 6, 1, 1, 7, 25, 44, 44, 25, 7, 1, 1, 8, 33, 70, 89, 70, 33, 8, 1, 1, 9, 42, 104, 160, 160, 104, 42, 9, 1, 1, 10, 52, 147, 265, 321, 265, 147, 52, 10, 1
Offset: 0
Triangle begins:
1,
1, 1;
1, 2, 1;
1, 3, 3, 1;
1, 4, 7, 4, 1;
1, 5, 12, 12, 5, 1;
1, 6, 18, 25, 18, 6, 1;
1, 7, 25, 44, 44, 25, 7, 1;
1, 8, 33, 70, 89, 70, 33, 8, 1;
1, 9, 42, 104, 160, 160, 104, 42, 9, 1;
1, 10, 52, 147, 265, 321, 265, 147, 52, 10, 1;
...
Row sums: {1, 2, 4, 8, 17, 36, 75, 154, 313, 632, 1271, ...}.
-
T:= func< n,k,p | k eq 0 or k eq n select 1 else Binomial(n,k) + p^n*Binomial(n-2,k-1) -1 >;
[T(n,k,1): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 12 2021
-
T[n_, m_]:= If[m==0 || m==n, 1, Binomial[n, m] - 1 + Binomial[n-2, m-1]];
Table[T[n, m], {n, 0, 10}, {m, 0, n}]//Flatten
-
T(n,k)={if(k<=0||k>=n, k==0||k==n, binomial(n,k) - 1 + binomial(n-2, k-1))} \\ Andrew Howroyd, Jan 22 2020
-
def T(n,k,p): return 1 if (k==0 or k==n) else binomial(n,k) + p^n*binomial(n-2,k-1) -1
flatten([[T(n,k,1) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 12 2021
A173046
Triangle T(n, k, q) = binomial(n, k) + q^n*binomial(n-2, k-1) - 1 with T(n, 0) = T(n, n) = 1 and q = 2, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 5, 1, 1, 10, 10, 1, 1, 19, 37, 19, 1, 1, 36, 105, 105, 36, 1, 1, 69, 270, 403, 270, 69, 1, 1, 134, 660, 1314, 1314, 660, 134, 1, 1, 263, 1563, 3895, 5189, 3895, 1563, 263, 1, 1, 520, 3619, 10835, 18045, 18045, 10835, 3619, 520, 1, 1, 1033, 8236, 28791, 57553, 71931, 57553, 28791, 8236, 1033, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, 5, 1;
1, 10, 10, 1;
1, 19, 37, 19, 1;
1, 36, 105, 105, 36, 1;
1, 69, 270, 403, 270, 69, 1;
1, 134, 660, 1314, 1314, 660, 134, 1;
1, 263, 1563, 3895, 5189, 3895, 1563, 263, 1;
1, 520, 3619, 10835, 18045, 18045, 10835, 3619, 520, 1;
1, 1033, 8236, 28791, 57553, 71931, 57553, 28791, 8236, 1033, 1;
-
T:= func< n,k,q | k eq 0 or k eq n select 1 else Binomial(n,k) + q^n*Binomial(n-2,k-1) -1 >;
[T(n,k,2): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 16 2021
-
T[n_, m_, q_]:= If[k==0 || k==n, 1, Binomial[n, k] +(q^n)*Binomial[n-2, k-1] -1];
Table[T[n,k,2], {n,0,12}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Feb 16 2021 *)
-
def T(n,k,q): return 1 if (k==0 or k==n) else binomial(n,k) + q^n*binomial(n-2,k-1) -1
flatten([[T(n,k,2) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 16 2021
Showing 1-3 of 3 results.
Comments