A173075 T(n,k) = binomial(n, k) - 1 + q^(floor(n/2))*binomial(n-2, k-1) for 0 < k < n with T(n,0) = T(n,n) = 1 and q = 1. Triangle read by rows.
1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 7, 4, 1, 1, 5, 12, 12, 5, 1, 1, 6, 18, 25, 18, 6, 1, 1, 7, 25, 44, 44, 25, 7, 1, 1, 8, 33, 70, 89, 70, 33, 8, 1, 1, 9, 42, 104, 160, 160, 104, 42, 9, 1, 1, 10, 52, 147, 265, 321, 265, 147, 52, 10, 1
Offset: 0
Examples
Triangle begins: 1, 1, 1; 1, 2, 1; 1, 3, 3, 1; 1, 4, 7, 4, 1; 1, 5, 12, 12, 5, 1; 1, 6, 18, 25, 18, 6, 1; 1, 7, 25, 44, 44, 25, 7, 1; 1, 8, 33, 70, 89, 70, 33, 8, 1; 1, 9, 42, 104, 160, 160, 104, 42, 9, 1; 1, 10, 52, 147, 265, 321, 265, 147, 52, 10, 1; ... Row sums: {1, 2, 4, 8, 17, 36, 75, 154, 313, 632, 1271, ...}.
Links
- G. C. Greubel, Rows n = 0..100 of the triangle, flattened
- E. Getzler, The semi-classical approximation for modular operads, arXiv:alg-geom/9612005, 1996.
Crossrefs
Programs
-
Magma
T:= func< n,k,p | k eq 0 or k eq n select 1 else Binomial(n,k) + p^n*Binomial(n-2,k-1) -1 >; [T(n,k,1): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 12 2021
-
Mathematica
T[n_, m_]:= If[m==0 || m==n, 1, Binomial[n, m] - 1 + Binomial[n-2, m-1]]; Table[T[n, m], {n, 0, 10}, {m, 0, n}]//Flatten
-
PARI
T(n,k)={if(k<=0||k>=n, k==0||k==n, binomial(n,k) - 1 + binomial(n-2, k-1))} \\ Andrew Howroyd, Jan 22 2020
-
Sage
def T(n,k,p): return 1 if (k==0 or k==n) else binomial(n,k) + p^n*binomial(n-2,k-1) -1 flatten([[T(n,k,1) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 12 2021
Formula
T(n, k) = binomial(n, k) - 1 + binomial(n-2, k-1) for 0 < k < n.
T(n, 0) = T(n, n) = 1.
From G. C. Greubel, Feb 12 2021: (Start)
T(n, k, p) = binomial(n, k) + p^n*binomial(n-2, k-1) - 1 with T(n, 0) = T(n, n) = 1 and p = 1.
Sum_{k=0..n} T(n, k, 1) = 2^(n-2) + 2^n - (n-1) - (5/4)*[n=0] -(1/2)*[n=1]. (End)
Comments