A132065 a(n) = Sum_{k=1 to d(n)} C(d(n)-1, k-1) d_k, where d(n) is the number of divisors of n and d_k is the k-th divisor of n.
1, 3, 4, 9, 6, 22, 8, 27, 16, 32, 12, 123, 14, 42, 40, 81, 18, 164, 20, 171, 52, 62, 24, 704, 36, 72, 64, 219, 30, 808, 32, 243, 76, 92, 72, 1765, 38, 102, 88, 944, 42, 1016, 44, 315, 276, 122, 48, 4075, 64, 336, 112, 363, 54, 1224, 104, 1170, 124, 152, 60, 17815, 62
Offset: 1
Keywords
Examples
Since the divisors of 12 are 1,2,3,4,6,12 and since row (d(12)-1) of Pascal's triangle is 1,5,10,10,5,1, a(12) = 1*1 + 5*2 + 10*3 + 10*4 + 5*6 + 1*12 = 123. From _Peter Luschny_, May 18 2016: (Start) Also the lower vertex of the accumulation triangle of the divisors of n. For instance a(39) = 88 because the lower vertex of ATD(39) = 88. ATD(39) is: [ 39 13 3 1] [ 52 16 4] [ 68 20] [ 88] (End)
Links
- Rémy Sigrist, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
f[n_] := Block[{d, l, k},d = Divisors[n];l = Length[d];Sum[ Binomial[l - 1, k - 1]*d[[k]], {k, l}]];Array[f, 100] (* Ray Chandler, Oct 31 2007 *) Table[Sum[Binomial[Length[Divisors[n]] - 1, k - 1]*Divisors[n][[k]], {k, 1, Length[Divisors[n]]}], {n, 1, 70}] (* Stefan Steinerberger, Oct 31 2007 *)
-
PARI
a(n) = {d = divisors(n); sum(i=1, #d, d[i]*binomial(#d-1, i-1));} \\ Michel Marcus, Sep 13 2014
-
Sage
def A132065(n): D = divisors(n)[::-1] T = matrix(ZZ, len(D)) for (m, d) in enumerate(D): T[0, m] = d for k in range(m-1, -1, -1) : T[m-k, k] = T[m-k-1, k+1] + T[m-k-1, k] return T[len(D)-1,0] print([A132065(n) for n in range(1,62)]) # Peter Luschny, May 18 2016
Formula
a(p) = p+1, for p prime. - Michel Marcus, Sep 13 2014
Extensions
Extended by Ray Chandler and Stefan Steinerberger, Nov 01 2007