cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A132117 Binomial transform of [1, 7, 17, 17, 6, 0, 0, 0, ...].

Original entry on oeis.org

1, 8, 32, 90, 205, 406, 728, 1212, 1905, 2860, 4136, 5798, 7917, 10570, 13840, 17816, 22593, 28272, 34960, 42770, 51821, 62238, 74152, 87700, 103025, 120276, 139608, 161182, 185165, 211730, 241056, 273328, 308737, 347480, 389760, 435786, 485773, 539942, 598520
Offset: 1

Views

Author

Gary W. Adamson, Aug 10 2007

Keywords

Comments

Equals row sums of triangle A178067. - Gary W. Adamson, May 18 2010
Antidiagonal sums of the convolution array A213771. - Clark Kimberling, Jul 04 2012
Partial sums of A081436. - J. M. Bergot, Jun 20 2013

Examples

			a(3) = 32 = (1, 2, 1) dot (1, 7, 17) = (1 + 14 + 17).
a(5) = 15^2 - (10+6+3+1) = A000537(5) - A000292(4) = 225 - 20 = 205. - _Bruno Berselli_, May 01 2010
		

Crossrefs

Cf. A178067. - Gary W. Adamson, May 18 2010

Programs

  • Maple
    a:= n-> (Matrix([[0,0,2,13,46]]). Matrix(5, (i,j)-> if (i=j-1) then 1 elif j=1 then [5,-10,10,-5,1][i] else 0 fi)^n)[1,1]: seq(a(n), n=1..29); # Alois P. Heinz, Aug 07 2008
    a:= n-> (4+(6+(8+6*n)*n)*n)*n/24: seq(a(n),n=1..40); # Alois P. Heinz, Aug 07 2008
  • Mathematica
    Table[(4 n + 6 n^2 + 8 n^3 + 6 n^4) / 24, {n, 50}] (* Vincenzo Librandi, Jun 21 2013 *)
  • PARI
    a(n) = (4*n+6*n^2+8*n^3+6*n^4)/24 \\ Charles R Greathouse IV, Sep 03 2011

Formula

Let M = the infinite lower triangular matrix of the natural numbers: [1; 2,3; 4,5,6; ...]; and V = [1, 2, 3, ...]. Then M*V = A132117.
O.g.f.: -x(1+x)(2x+1)/(-1+x)^5. - R. J. Mathar, Apr 02 2008
a(n) = (4*n + 6*n^2 + 8*n^3 + 6*n^4)/24. - Alois P. Heinz, Aug 07 2008
a(n) = A000217(n)^2 - Sum_{i=1..n-1} A000217(i) = n*(n+1)*(3*n^2+n+2)/12. - Bruno Berselli, May 01 2010

Extensions

More terms from R. J. Mathar, Apr 02 2008