cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A132123 a(n) = n * (2*n + 1) * (6*n^2 + 4*n + 1) / 3.

Original entry on oeis.org

0, 11, 110, 469, 1356, 3135, 6266, 11305, 18904, 29811, 44870, 65021, 91300, 124839, 166866, 218705, 281776, 357595, 447774, 554021, 678140, 822031, 987690, 1177209, 1392776, 1636675, 1911286, 2219085, 2562644, 2944631, 3367810, 3835041
Offset: 0

Views

Author

Reinhard Zumkeller, Aug 12 2007

Keywords

Comments

Central terms of the triangle in A132121.

Programs

  • Magma
    [n*(2*n+1)*(6*n^2+4*n+1)/3: n in [0..40]]; // G. C. Greubel, Mar 16 2019
    
  • Maple
    seq((1/3)*n*(2*n+1)*(6*n^2+4*n+1),n=0..32); # Emeric Deutsch, Aug 19 2007
  • Mathematica
    Table[n(2n+1)(6n^2+4n+1)/3,{n,0,40}] (* or *) LinearRecurrence[{5,-10,10,-5,1},{0,11,110,469,1356},40] (* Harvey P. Dale, Jun 02 2015 *)
  • PARI
    {a(n) = n*(2*n+1)*(6*n^2+4*n+1)/3}; \\ G. C. Greubel, Mar 16 2019
    
  • Sage
    [n*(2*n+1)*(6*n^2+4*n+1)/3 for n in (0..40)] # G. C. Greubel, Mar 16 2019

Formula

G.f.: x*(11 + 55*x + 29*x^2 + x^3)/(1-x)^5. - Emeric Deutsch, Aug 19 2007
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5); a(0)=0, a(1)=11, a(2)=110, a(3)=469, a(4)=1356. - Harvey P. Dale, Jun 02 2015
E.g.f.: x*(33 + 132*x + 86*x^2 + 12*x^3)*exp(x)/3. - G. C. Greubel, Mar 16 2019