A132124 a(n) = n*(n+1)*(8*n + 1)/6.
0, 3, 17, 50, 110, 205, 343, 532, 780, 1095, 1485, 1958, 2522, 3185, 3955, 4840, 5848, 6987, 8265, 9690, 11270, 13013, 14927, 17020, 19300, 21775, 24453, 27342, 30450, 33785, 37355, 41168, 45232, 49555, 54145, 59010, 64158, 69597, 75335, 81380, 87740, 94423
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Crossrefs
Programs
-
Maple
seq((1/6)*n*(n+1)*(8*n+1),n=0..40); # Emeric Deutsch, Aug 30 2007
-
Mathematica
a[n_] := n*(n + 1)*(8*n + 1)/6; Array[a, 42, 0] (* Amiram Eldar, May 20 2023 *)
Formula
a(n) = A132121(n,2) for n > 1.
G.f.: x*(3+5*x)/(1-x)^4. - Emeric Deutsch, Aug 30 2007
From Bruno Berselli, Nov 25 2010: (Start)
Sum_{n>=1} 1/a(n) = 54 - 24*(sqrt(2)+1)*Pi/7 - 24*(sqrt(2)+8)*log(2)/7 + 48*sqrt(2)*log(2-sqrt(2))/7. - Amiram Eldar, May 20 2023
E.g.f.: exp(x)*x*(18 + 33*x + 8*x^2)/6. - Stefano Spezia, Feb 21 2024
Comments