cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A132191 Square array a(m,n) read by antidiagonals, defined by A000010(n)*a(m,n) = Sum_{k=1..n, gcd(k,n)=1} m^{ Sum_{d|n} A000010(d)/ (multiplicative order of k modulo d) }.

Original entry on oeis.org

1, 1, 2, 1, 4, 3, 1, 6, 9, 4, 1, 12, 18, 16, 5, 1, 12, 54, 40, 25, 6, 1, 40, 72, 160, 75, 36, 7, 1, 28, 405, 280, 375, 126, 49, 8, 1, 96, 390, 2176, 825, 756, 196, 64, 9, 1, 104, 1944, 2800, 8125, 2016, 1372, 288, 81, 10, 1, 280, 3411, 17920, 13175, 23976, 4312, 2304, 405
Offset: 1

Views

Author

N. J. A. Sloane, Dec 01 2007, based on email from Max Alekseyev, Nov 08 2007

Keywords

Comments

From Andrew Howroyd, Apr 22 2017: (Start)
Number of step shifted (decimated) sequences of length n using a maximum of m different symbols. See A056371 for an explanation of step shifts. -
Number of mappings with domain {0..n-1} and codomain {1..m} up to equivalence. Mappings A and B are equivalent if there is a d, prime to n, such that A(i) = B(i*d mod n) for i in {0..n-1}. (End)

Examples

			Array begins:
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
2, 4, 6, 12, 12, 40, 28, 96, 104, 280, 216, 1248, 704, 2800, 4344, 8928, 8232, 44224, 29204, 136032, ...
3, 9, 18, 54, 72, 405, 390, 1944, 3411, 14985, 17802, 139968, 133104, 798525, 1804518, 5454378, 8072532, 64599849, 64573626, 437732424, ...
4, 16, 40, 160, 280, 2176, 2800, 17920, 44224, 263296, 419872, 4280320, 5594000, 44751616, 134391040, 539054080, 1073758360, 11453771776, 15271054960, 137575813120, ...
5, 25, 75, 375, 825, 8125, 13175, 103125, 327125, 2445625, 4884435, 61640625, 101732425, 1017323125, 3816215625, 19104609375, 47683838325, 635787765625, 1059638680675, 11924780390625, ...
		

Crossrefs

Row m=2 is A056371
Row m=3 is A056372
Row m=4 is A056373
Row m=5 is A056374
Row m=6 is A056375
Column n=2 is A000290
Column n=3 is A002411
Column n=4 is A019582

Programs

  • Mathematica
    a[m_, n_] := (1/EulerPhi[n])*Sum[If[GCD[k, n]==1, m^DivisorSum[n, EulerPhi[#] / MultiplicativeOrder[k, #]&], 0], {k, 1, n}]; Table[a[m-n+1, n], {m, 1, 15}, {n, m, 1, -1}] // Flatten (* Jean-François Alcover, Dec 01 2015 *)
  • PARI
    for(i=1,15,for(m=1,i,n=i-m+1; print1(sum(k=1, n, if(gcd(k,n)==1, m^sumdiv(n,d,eulerphi(d)/znorder(Mod(k,d))),0))/eulerphi(n)","))) \\ Herman Jamke (hermanjamke(AT)fastmail.fm), Apr 26 2008

Extensions

More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Apr 26 2008
Offset corrected by Andrew Howroyd, Apr 20 2017