cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A132209 a(0) = 0 and a(n) = 2*n^2 + 2*n - 1, for n>=1.

Original entry on oeis.org

0, 3, 11, 23, 39, 59, 83, 111, 143, 179, 219, 263, 311, 363, 419, 479, 543, 611, 683, 759, 839, 923, 1011, 1103, 1199, 1299, 1403, 1511, 1623, 1739, 1859, 1983, 2111, 2243, 2379, 2519, 2663, 2811, 2963, 3119, 3279, 3443, 3611, 3783, 3959, 4139, 4323, 4511
Offset: 0

Views

Author

Mohamed Bouhamida, Nov 06 2007

Keywords

Comments

Previous name was: Sequence gives X values that satisfy the integer equation 2*X^3 + 3*X^2 = Y^2.
To find Y values: b(n) = (2*n^2 + 2*n - 1)*(2*n - 1).

Crossrefs

Programs

  • Magma
    [0] cat [2*n^2+2*n-1: n in [1..50]]; // Vincenzo Librandi, Sep 22 2015
    
  • Mathematica
    Join[{0}, LinearRecurrence[{3, -3, 1}, {3, 11, 23}, 40]] (* Vincenzo Librandi, Sep 22 2015 *)
  • PARI
    for(n=0,50, print1(if(n==0, 0, 2*n^2 + 2*n -1), ", ")) \\ G. C. Greubel, Jul 13 2017

Formula

a(n) = 2*n^2 + 2*n - 1 for n>=1.
G.f.: x*(1+x)*(3-x)/(1-x)^3. - R. J. Mathar, Nov 14 2007
E.g.f.: 1 + (2*x^2 + 4*x -1)*exp(x). - G. C. Greubel, Jul 13 2017
From Amiram Eldar, Mar 07 2021: (Start)
Sum_{n>=1} 1/a(n) = 1 + sqrt(3)*Pi*tan(sqrt(3)*Pi/2)/6.
Product_{n>=1} (1 + 1/a(n)) = -Pi*sec(sqrt(3)*Pi/2)/2.
Product_{n>=1} (1 - 1/a(n)) = cos(sqrt(5)*Pi/2)*sec(sqrt(3)*Pi/2)/2. (End)

Extensions

Edited by the Associate Editors of the OEIS, Nov 15 2009
More terms from Vincenzo Librandi, Sep 22 2015
Shorter name (using formula given) from Joerg Arndt, Sep 27 2015