A132222 Beatty sequence 1+2*floor(n*Pi/2), which contains infinitely many primes.
1, 3, 7, 9, 13, 15, 19, 21, 25, 29, 31, 35, 37, 41, 43, 47, 51, 53, 57, 59, 63, 65, 69, 73, 75, 79, 81, 85, 87, 91, 95, 97, 101, 103, 107, 109, 113, 117, 119, 123, 125, 129, 131, 135, 139, 141, 145, 147, 151, 153, 157, 161, 163, 167, 169, 173, 175, 179, 183, 185, 189
Offset: 0
Examples
a(0) = 1 because 1 + 2*floor(0*Pi) = 1 + 2*0 = 1 + 0 = 1. a(1) = 3 because 1 + 2*floor(1*Pi/2) = 1 + 2*floor(1.5707963) = 1 + 2*1 = 3. a(2) = 7 because 1 + 2*floor(2*Pi/2) = 1 + 2*floor(3.1415926) = 1 + 2*3 = 7. a(3) = 9 because 1 + 2*floor(3*Pi/2) = 1 + 2*floor(4.7123889) = 1 + 2*4 = 9. a(4) = 13 because 1 + 2*floor(4*Pi/2) = 1 + 2*floor(6.2831853) = 1 + 2*6 = 13. a(5) = 15 because 1 + 2*floor(5*Pi/2) = 1 + 2*floor(7.8539816) = 1 + 2*7 = 15. a(7) = 21 because 1 + 2*floor(7*Pi/2) = 1 + 2*floor(10.995574) = 1 + 2*10 = 21.
Links
- William D. Banks and Igor E. Shparlinski, Prime numbers with Beatty sequences, arXiv:0708.1015 [math.NT], 2007.
Programs
-
Mathematica
Table[1 + 2*Floor[n*Pi/2], {n, 0, 60}] (* Stefan Steinerberger, Sep 02 2007 *)
Formula
a(n) = 1 + 2*floor(n*Pi/2).
a(n) = 1 + 2*A140758(n). - L. Edson Jeffery, Mar 16 2013
Extensions
More terms from Stefan Steinerberger, Sep 02 2007
Comments