cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A157211 Triangle T(n, k, m) = (m*(n-k) + 1)*T(n-1, k-1, m) + (m*k + 1)*T(n-1, k, m) - m*f(n,k)*T(n-2, k-1, m) with T(n, 0, m) = T(n, n, m) = 1, f(n, k) = k if k <= floor(n/2) otherwise n-k, and m = 2, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 15, 15, 1, 1, 50, 134, 50, 1, 1, 157, 960, 960, 157, 1, 1, 480, 6013, 12636, 6013, 480, 1, 1, 1451, 34717, 136809, 136809, 34717, 1451, 1, 1, 4366, 190528, 1303472, 2361474, 1303472, 190528, 4366, 1, 1, 13113, 1012326, 11392866, 34496986, 34496986, 11392866, 1012326, 13113, 1
Offset: 0

Views

Author

Roger L. Bagula, Feb 25 2009

Keywords

Examples

			Triangle begins as:
  1;
  1,     1;
  1,     4,       1;
  1,    15,      15,        1;
  1,    50,     134,       50,        1;
  1,   157,     960,      960,      157,        1;
  1,   480,    6013,    12636,     6013,      480,        1;
  1,  1451,   34717,   136809,   136809,    34717,     1451,       1;
  1,  4366,  190528,  1303472,  2361474,  1303472,   190528,    4366,     1;
  1, 13113, 1012326, 11392866, 34496986, 34496986, 11392866, 1012326, 13113, 1;
		

Crossrefs

Programs

  • Mathematica
    f[n_,k_]:= If[k<=Floor[n/2], k, n-k];
    T[n_, k_, m_]:= T[n, k, m]= If[k==0 || k==n, 1, (m*(n-k)+1)*T[n-1,k-1,m] + (m*k+1)*T[n-1,k,m] - m*f[n,k]*T[n-2,k-1,m]];
    Table[T[n,k,2], {n,0,12}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Jan 10 2022 *)
  • Sage
    def f(n,k): return k if (k <= n//2) else n-k
    @CachedFunction
    def T(n,k,m):  # A157211
        if (k==0 or k==n): return 1
        else: return (m*(n-k) +1)*T(n-1,k-1,m) + (m*k+1)*T(n-1,k,m) - m*f(n,k)*T(n-2,k-1,m)
    flatten([[T(n,k,2) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jan 10 2022

Formula

T(n, k, m) = (m*(n-k) + 1)*T(n-1, k-1, m) + (m*k + 1)*T(n-1, k, m) - m*f(n,k)*T(n-2, k-1, m) with T(n, 0, m) = T(n, n, m) = 1, f(n, k) = k if k <= floor(n/2) otherwise n-k, and m = 2.
T(n, n-k, m) = T(n, k, m).
T(n, 1, 2) = A132308(n-1). - G. C. Greubel, Jan 10 2022

Extensions

Edited by G. C. Greubel, Jan 10 2022

A132307 2*A007318^(2) - A000012.

Original entry on oeis.org

1, 3, 1, 7, 7, 1, 15, 23, 11, 1, 31, 63, 47, 15, 1, 63, 159, 159, 79, 19, 1, 127, 383, 479, 319, 119, 23, 1, 255, 895, 1343, 1119, 559, 167, 27, 1, 511, 2047, 3583, 3583, 2239, 895, 223, 31, 1, 1023, 4607, 9215, 10751, 8063, 4031, 1343, 287, 35, 1
Offset: 0

Views

Author

Gary W. Adamson, Aug 18 2007

Keywords

Comments

Row sums = A132308: (1, 4, 15, 50, 157, 480, 1451, ...). Inverse binomial transform of A132307 = triangle A132309 (having row sums A077552).

Examples

			First few rows of the triangle:
   1;
   3,   1;
   7,   7,   1;
  15,  23,  11,  1;
  31,  63,  47, 15,  1;
  63, 159, 159, 79, 19, 1;
  ...
		

Crossrefs

Formula

2*A007318^(2) - A000012 as infinite lower triangular matrices.
Showing 1-2 of 2 results.