cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A132324 Decimal expansion of Product_{k>=1} (1+1/3^k).

Original entry on oeis.org

1, 5, 6, 4, 9, 3, 4, 0, 1, 8, 5, 6, 7, 0, 1, 1, 5, 3, 7, 9, 3, 8, 8, 4, 9, 1, 0, 6, 7, 2, 8, 8, 3, 5, 4, 1, 6, 5, 6, 9, 4, 2, 5, 9, 1, 9, 8, 9, 5, 0, 3, 5, 0, 0, 9, 4, 9, 6, 7, 2, 1, 0, 2, 9, 9, 2, 3, 0, 2, 1, 1, 0, 7, 2, 5, 8, 0, 9, 6, 7, 6, 6, 9, 3, 9, 0, 3, 6, 6, 0, 3, 6, 7, 7, 2, 9, 6, 3, 8, 8, 1, 5, 2, 6, 0
Offset: 1

Views

Author

Hieronymus Fischer, Aug 20 2007

Keywords

Comments

Half the constant A132323.

Examples

			1.56493401856701153793884910...
		

Crossrefs

Programs

  • Mathematica
    digits = 105; NProduct[1+1/3^k, {k, 1, Infinity}, NProductFactors -> 100, WorkingPrecision -> digits+5] // N[#, digits+5]& // RealDigits[#, 10, digits]& // First (* Jean-François Alcover, Feb 18 2014 *)
    N[QPochhammer[-1/3,1/3]] (* G. C. Greubel, Dec 01 2015 *)

Formula

(1/2)*lim sup Product{k=0..floor(log_3(n))} (1+1/floor(n/3^k)) for n-->oo.
(1/2)*lim sup A132327(n)/A132027(n) for n-->oo.
(1/2)*lim sup A132327(n)/n^((1+log_3(n))/2) for n-->oo.
(1/2)*lim sup A132328(n)/n^((log_3(n)-1)/2) for n-->oo.
exp(Sum_{n>0} 3^(-n)*Sum_{k|n} -(-1)^k/k) = exp(Sum_{n>0} A000593(n)/(n*3^n)).
(1/2)*lim sup A132327(n+1)/A132327(n) = 1.56493401856701153793884910... for n-->oo.
Equals (-1/3; 1/3){infinity}, where (a;q){infinity} is the q-Pochhammer symbol. - G. C. Greubel, Dec 01 2015
From Amiram Eldar, Feb 19 2022: (Start)
Equals (sqrt(2)/2) * exp(log(3)/24 + Pi^2/(12*log(3))) * Product_{k>=1} (1 - exp(-2*(2*k-1)*Pi^2/log(3))) (McIntosh, 1995).
Equals Sum_{n>=0} 1/A027871(n). (End)