cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A027871 a(n) = Product_{i=1..n} (3^i - 1).

Original entry on oeis.org

1, 2, 16, 416, 33280, 8053760, 5863137280, 12816818094080, 84078326697164800, 1654829626053597593600, 97714379759212830706892800, 17309711516825516108403231948800
Offset: 0

Views

Author

Keywords

Comments

2*(10)^m|a(n) where 4*m <= n <= 4*m+3 for m >= 1. - G. C. Greubel, Nov 20 2015
Given probability p = 1/3^n that an outcome will occur at the n-th stage of an infinite process, then starting at n=1, 1-a(n)/A047656(n+1) is the probability that the outcome has occurred at or before the n-th iteration. The limiting ratio is 1-A100220 ~ 0.4398739. - Bob Selcoe, Mar 01 2016

Crossrefs

Cf. A005329 (q=2), A027637 (q=4), A027872 (q=5), A027873 (q=6), A027875 (q=7), A027876 (q=8), A027877 (q=9), A027878 (q=10), A027879 (q=11), A027880 (q=12).

Programs

Formula

a(n) ~ c * 3^(n*(n+1)/2), where c = A100220 = Product_{k>=1} (1-1/3^k) = 0.560126077927948944969792243314140014379736333798... . - Vaclav Kotesovec, Nov 21 2015
a(n) = 3^(binomial(n+1,2))*(1/3;1/3){n}, where (a;q){n} is the q-Pochhammer symbol. - G. C. Greubel, Dec 24 2015
a(n) = Product_{i=1..n} A024023(i). - Michel Marcus, Dec 27 2015
G.f.: Sum_{n>=0} 3^(n*(n+1)/2)*x^n / Product_{k=0..n} (1 + 3^k*x). - Ilya Gutkovskiy, May 22 2017
From Amiram Eldar, Feb 19 2022: (Start)
Sum_{n>=0} 1/a(n) = A132324.
Sum_{n>=0} (-1)^n/a(n) = A100220. (End)

A132323 Decimal expansion of Product_{k>=0} (1+1/3^k).

Original entry on oeis.org

3, 1, 2, 9, 8, 6, 8, 0, 3, 7, 1, 3, 4, 0, 2, 3, 0, 7, 5, 8, 7, 7, 6, 9, 8, 2, 1, 3, 4, 5, 7, 6, 7, 0, 8, 3, 3, 1, 3, 8, 8, 5, 1, 8, 3, 9, 7, 9, 0, 0, 7, 0, 0, 1, 8, 9, 9, 3, 4, 4, 2, 0, 5, 9, 8, 4, 6, 0, 4, 2, 2, 1, 4, 5, 1, 6, 1, 9, 3, 5, 3, 3, 8, 7, 8, 0, 7, 3, 2, 0, 7, 3, 5, 4, 5, 9, 2, 7, 7, 6, 3, 0, 5, 2, 0
Offset: 1

Views

Author

Hieronymus Fischer, Aug 20 2007

Keywords

Comments

Twice the constant A132324.

Examples

			3.12986803713402307587769821345767...
		

Crossrefs

Programs

  • Mathematica
    digits = 105; NProduct[1+1/3^k, {k, 0, Infinity}, NProductFactors -> 100, WorkingPrecision -> digits+3] // N[#, digits+3]& // RealDigits[#, 10, digits]& // First (* Jean-François Alcover, Feb 18 2014 *)
    2*N[QPochhammer[-1/3,1/3]] (* G. C. Greubel, Dec 01 2015 *)
  • PARI
    prodinf(x=0, 1+(1/3)^x) \\ Altug Alkan, Dec 03 2015

Formula

Equals lim sup_{n->oo} Product_{0<=k<=floor(log_3(n))} (1+1/floor(n/3^k)).
Equals lim sup_{n->oo} A132327(n)/A132027(n).
Equals lim sup_{n->oo} A132327(n)/n^((1+log_3(n))/2).
Equals lim sup_{n->oo} A132328(n)/n^((log_3(n)-1)/2).
Equals 2*exp(Sum_{n>0} 3^(-n) * Sum{k|n} -(-1)^k/k) = 2*exp(Sum_{n>0} A000593(n)/(n*3^n)).
Equals lim sup_{n->oo} A132327(n+1)/A132327(n).
Equals 2*(-1/3; 1/3){infinity}, where (a;q){infinity} is the q-Pochhammer symbol. - G. C. Greubel, Dec 01 2015
Equals sqrt(2) * exp(log(3)/24 + Pi^2/(12*log(3))) * Product_{k>=1} (1 - exp(-2*(2*k-1)*Pi^2/log(3))) (McIntosh, 1995). - Amiram Eldar, May 25 2023

A132267 Decimal expansion of Product_{k>0} (1-1/11^k).

Original entry on oeis.org

9, 0, 0, 8, 3, 2, 7, 0, 6, 8, 0, 9, 7, 1, 5, 2, 7, 9, 9, 4, 9, 8, 6, 2, 6, 9, 4, 7, 6, 0, 6, 4, 7, 7, 4, 4, 7, 6, 2, 4, 9, 1, 1, 9, 2, 2, 1, 6, 6, 3, 9, 5, 2, 4, 0, 2, 1, 4, 6, 1, 7, 2, 4, 8, 8, 0, 6, 5, 7, 0, 8, 7, 0, 6, 7, 0, 9, 7, 5, 8, 5, 6, 7, 0, 0, 1, 6, 3, 9, 2, 9, 9, 1, 9, 9, 2, 8, 3, 5, 6, 4, 6, 5, 2, 0
Offset: 0

Views

Author

Hieronymus Fischer, Aug 20 2007

Keywords

Examples

			0.900832706809715279949862694760...
		

Crossrefs

Programs

  • Mathematica
    digits = 105; NProduct[1-1/11^k, {k, 1, Infinity}, NProductFactors -> 100, WorkingPrecision -> digits+3] // N[#, digits+3]& // RealDigits[#, 10, digits]& // First (* Jean-François Alcover, Feb 18 2014 *)
    N[QPochhammer[1/11, 1/11], 200] (* G. C. Greubel, Dec 20 2015 *)
  • PARI
    prodinf(x=1, 1-1/11^x) \\ Altug Alkan, Dec 20 2015

Formula

Equals exp(-Sum_{n>0} sigma_1(n)/(n*11^n)) = exp(-Sum_{n>0} A000203(n)/(n*11^n)).
Equals (1/11; 1/11){infinity}, where (a;q){infinity} is the q-Pochhammer symbol. - G. C. Greubel, Dec 20 2015
From Amiram Eldar, May 09 2023: (Start)
Equals sqrt(2*Pi/log(11)) * exp(log(11)/24 - Pi^2/(6*log(11))) * Product_{k>=1} (1 - exp(-4*k*Pi^2/log(11))) (McIntosh, 1995).
Equals Sum_{n>=0} (-1)^n/A027879(n). (End)

A290000 a(n) = Product_{k=1..n-1} (3^k + 1).

Original entry on oeis.org

1, 1, 4, 40, 1120, 91840, 22408960, 16358540800, 35792487270400, 234870301468364800, 4623187014103292723200, 272999193182799435304960000, 48361261073946554365403054080000, 25701205307660304745058529866383360000, 40976048450930207702360695570691784048640000
Offset: 0

Views

Author

Ilya Gutkovskiy, Jun 06 2020

Keywords

Crossrefs

Sequences of the form Product_{j=1..n-1} (m^j + 1): A000012 (m=0), A011782 (m=1), A028362 (m=2), this sequence (m=3), A309327 (m=4).

Programs

  • Magma
    [n lt 3 select 1 else (&*[3^j +1: j in [1..n-1]]): n in [1..20]]; // G. C. Greubel, Feb 21 2021
  • Mathematica
    Table[Product[3^k + 1, {k, 1, n - 1}], {n, 0, 14}]
  • PARI
    a(n) = prod(k=1, n-1, 3^k + 1); \\ Michel Marcus, Jun 06 2020
    
  • Sage
    from sage.combinat.q_analogues import q_pochhammer
    [1]+[3^(binomial(n,2))*q_pochhammer(n-1, -1/3, 1/3) for n in (1..20)] # G. C. Greubel, Feb 21 2021
    

Formula

G.f. A(x) satisfies: A(x) = 1 + x * A(3*x) / (1 - x).
G.f.: Sum_{k>=0} 3^(k*(k - 1)/2) * x^k / Product_{j=0..k-1} (1 - 3^j*x).
a(0) = 1; a(n) = Sum_{k=0..n-1} 3^k * a(k).
a(n) ~ c * 3^(n*(n - 1)/2), where c = Product_{k>=1} (1 + 1/3^k) = 1.564934018567011537938849... = A132324.
a(n) = 3^(binomial(n+1,2))*(-1/3;1/3){n}, where (a;q){n} is the q-Pochhammer symbol. - G. C. Greubel, Feb 21 2021

A370466 Decimal expansion of Product_{k>=1} 1 / (1 - 1/3^k).

Original entry on oeis.org

1, 7, 8, 5, 3, 1, 2, 3, 4, 1, 9, 9, 8, 5, 3, 4, 1, 9, 0, 3, 6, 7, 4, 8, 6, 2, 9, 6, 0, 1, 3, 7, 0, 3, 5, 3, 5, 7, 1, 8, 7, 9, 6, 0, 0, 8, 2, 0, 7, 9, 3, 9, 6, 1, 4, 2, 7, 4, 3, 0, 0, 4, 8, 2, 2, 8, 8, 4, 8, 1, 8, 1, 1, 6, 0, 9, 6, 9, 2, 7, 3, 2, 3, 7, 4, 0, 5, 5, 6, 9, 3, 7, 1, 1, 0, 3, 9, 4, 3, 8
Offset: 1

Views

Author

Ilya Gutkovskiy, Mar 30 2024

Keywords

Examples

			1.7853123419985341903674862960137035357...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[1/QPochhammer[1/3], 10, 120][[1]] (* Vaclav Kotesovec, Mar 31 2024 *)

Formula

Equals 1/QPochhammer(1/3). - Vaclav Kotesovec, Mar 31 2024
Showing 1-5 of 5 results.