cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A173007 Triangle T(n,k) read by rows: coefficient [x^k] of the polynomial Product_{i=1..n} (x + q^i) in row n and q = 3.

Original entry on oeis.org

1, 3, 1, 27, 12, 1, 729, 351, 39, 1, 59049, 29160, 3510, 120, 1, 14348907, 7144929, 882090, 32670, 363, 1, 10460353203, 5223002148, 650188539, 24698520, 297297, 1092, 1, 22876792454961, 11433166050879, 1427185336941, 54665851779, 674887059, 2685501, 3279, 1
Offset: 0

Views

Author

Roger L. Bagula, Feb 07 2010

Keywords

Comments

Triangle T(n,k), read by rows, given by [3,6,27,72,243,702,2187,6480,...] DELTA [1,0,3,0,9,0,27,0,81,0,243,0,...] where DELTA is the operator defined in A084938. - Philippe Deléham, Oct 01 2011

Examples

			Triangle begins as:
            1;
            3,          1;
           27,         12,         1;
          729,        351,        39,        1;
        59049,      29160,      3510,      120,      1;
     14348907,    7144929,    882090,    32670,    363,    1;
  10460353203, 5223002148, 650188539, 24698520, 297297, 1092, 1;
		

Crossrefs

Cf. A023531 (q=0), A007318 (q=1), A108084 (q=2), this sequence (q=3), A173008 (q=4).

Programs

  • Magma
    function T(n,k,q)
      if k lt 0 or k gt n then return 0;
      elif k eq n then return 1;
      else return q^n*T(n-1,k,q) + T(n-1,k-1,q);
      end if; return T; end function;
    [T(n,k,3): k in [0..n], n in [0..10]]; // G. C. Greubel, Feb 20 2021
  • Mathematica
    (* First program *)
    p[x_, n_, q_] = If[n==0, 1, Product[x + q^i, {i, 1, n}]];
    Table[CoefficientList[p[x, n, 3], x], {n, 0, 10}] (* modified by G. C. Greubel, Feb 20 2021 *)
    (* Second program *)
    T[n_, k_, q_]:= If[k<0 || k>n, 0, If[k==n, 1, q^n*T[n-1,k,q] +T[n-1,k-1,q] ]];
    Table[T[n,k,3], {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Feb 20 2021 *)
  • Sage
    def T(n, k, q):
        if (k<0 or k>n): return 0
        elif (k==n): return 1
        else: return q^n*T(n-1,k,q) + T(n-1,k-1,q)
    flatten([[T(n,k,3) for k in (0..n)] for n in (0..10)]) # G. C. Greubel, Feb 20 2021
    

Formula

p(x,n,q) = 1 if n=0, Product_{i=1..n} (x + q^i) otherwise, with q=3.
T(n,k) = 3^n*T(n-1,k) + T(n-1,k-1), T(0,0)=1. - Philippe Deléham, Oct 01 2011
Sum_{k=0..n} T(n, k, 4) = A290000(n+1). - G. C. Greubel, Feb 20 2021

Extensions

Edited by G. C. Greubel, Feb 20 2021

A309327 a(n) = Product_{k=1..n-1} (4^k + 1).

Original entry on oeis.org

1, 1, 5, 85, 5525, 1419925, 1455423125, 5962868543125, 97701601079103125, 6403069829921181503125, 1678532740564688125136703125, 1760070825503098980191468752703125, 7382273863761775568111978346806480703125, 123854010565759745011512941023673583762640703125
Offset: 0

Views

Author

Ilya Gutkovskiy, Jun 06 2020

Keywords

Crossrefs

Sequences of the form Product_{j=1..n-1} (m^j + 1): A000012 (m=0), A011782 (m=1), A028362 (m=2), A290000 (m=3), this sequence (m=4).

Programs

  • Magma
    [n lt 2 select 1 else (&*[4^j +1: j in [1..n-1]]): n in [0..15]]; // G. C. Greubel, Feb 21 2021
  • Mathematica
    Table[Product[4^k + 1, {k, 1, n - 1}], {n, 0, 13}]
    Join[{1}, Table[4^(Binomial[n,2])*QPochhammer[-1/4, 1/4, n-1], {n,15}]] (* G. C. Greubel, Feb 21 2021 *)
  • PARI
    a(n) = prod(k=1, n-1, 4^k + 1); \\ Michel Marcus, Jun 06 2020
    
  • Sage
    from sage.combinat.q_analogues import q_pochhammer
    [1]+[4^(binomial(n,2))*q_pochhammer(n-1, -1/4, 1/4) for n in (1..15)] # G. C. Greubel, Feb 21 2021
    

Formula

G.f. A(x) satisfies: A(x) = 1 + x * A(4*x) / (1 - x).
G.f.: Sum_{k>=0} 2^(k*(k - 1)) * x^k / Product_{j=0..k-1} (1 - 4^j*x).
a(0) = 1; a(n) = Sum_{k=0..n-1} 4^k * a(k).
a(n) ~ c * 2^(n*(n - 1)), where c = Product_{k>=1} (1 + 1/4^k) = 1.355909673863479380345544...
a(n) = 4^(binomial(n+1,2))*(-1/4; 1/4){n}, where (a;q){n} is the q-Pochhammer symbol. - G. C. Greubel, Feb 21 2021

A119600 a(n) = 4*Product_{i=1..n-1} (3^i+1)^2.

Original entry on oeis.org

4, 4, 64, 6400, 5017600, 33738342400, 2008645953126400, 1070407428421058560000, 5124408580006984170864640000, 220656234047362257307900743516160000, 85495432669493277396354169745064287272960000, 298114237913837782686540845369489025952802406400000000, 9355246290649672947599943358541996936410690283965618585600000000
Offset: 0

Views

Author

N. J. A. Sloane, Jun 04 2006

Keywords

Crossrefs

Programs

  • Mathematica
    Table[4*Product[(3^i+1)^2,{i,n-1}],{n,0,12}] (* James C. McMahon, Sep 17 2024 *)
  • PARI
    a(n) = 4*prod(i=1, n-1, (3^i+1)^2); \\ Michel Marcus, Oct 28 2015

Formula

a(n) = 4*A290000(n)^2. - Vaclav Kotesovec, Sep 17 2024
Showing 1-3 of 3 results.