A108084
Triangle, read by rows, where T(0,0) = 1, T(n,k) = 2^n*T(n-1,k) + T(n-1,k-1).
Original entry on oeis.org
1, 2, 1, 8, 6, 1, 64, 56, 14, 1, 1024, 960, 280, 30, 1, 32768, 31744, 9920, 1240, 62, 1, 2097152, 2064384, 666624, 89280, 5208, 126, 1, 268435456, 266338304, 87392256, 12094464, 755904, 21336, 254, 1, 68719476736, 68451041280, 22638755840, 3183575040, 205605888, 6217920, 86360, 510, 1
Offset: 0
Triangle begins:
1;
2, 1;
8, 6, 1;
64, 56, 14, 1;
1024, 960, 280, 30, 1;
32768, 31744, 9920, 1240, 62, 1;
-
function T(n,k,q)
if k lt 0 or k gt n then return 0;
elif k eq n then return 1;
else return q^n*T(n-1,k,q) + T(n-1,k-1,q);
end if; return T; end function;
[T(n,k,2): k in [0..n], n in [0..10]]; // G. C. Greubel, Feb 20 2021
-
T[n_, k_, q_]:= T[n,k,q]= If[k<0 || k>n, 0, If[k==n, 1, q^n*T[n-1,k,q] +T[n-1,k-1,q] ]];
Table[T[n,k,2], {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Feb 20 2021 *)
-
def T(n, k, q):
if (k<0 or k>n): return 0
elif (k==n): return 1
else: return q^n*T(n-1,k,q) + T(n-1,k-1,q)
flatten([[T(n,k,2) for k in (0..n)] for n in (0..10)]) # G. C. Greubel, Feb 20 2021
A173008
Triangle T(n,k) read by rows: coefficient [x^k] of the polynomial Product_{i=1..n} (x + q^i) in row n, column 0<=k<=n, and q = 4.
Original entry on oeis.org
1, 4, 1, 64, 20, 1, 4096, 1344, 84, 1, 1048576, 348160, 22848, 340, 1, 1073741824, 357564416, 23744512, 371008, 1364, 1, 4398046511104, 1465657589760, 97615085568, 1543393280, 5957952, 5460, 1, 72057594037927936, 24017731997138944, 1600791219535872, 25384570585088, 99158478848, 95414592, 21844, 1
Offset: 0
Triangle begins as:
1;
4, 1;
64, 20, 1;
4096, 1344, 84, 1;
1048576, 348160, 22848, 340, 1;
1073741824, 357564416, 23744512, 371008, 1364, 1;
4398046511104, 1465657589760, 97615085568, 1543393280, 5957952, 5460, 1;
-
function T(n,k,q)
if k lt 0 or k gt n then return 0;
elif k eq n then return 1;
else return q^n*T(n-1,k,q) + T(n-1,k-1,q);
end if; return T; end function;
[T(n,k,4): k in [0..n], n in [0..10]]; // G. C. Greubel, Feb 20 2021
-
P:= 1: A:= 1:
for n from 1 to 12 do
P:= expand(P*(x+4^n));
A:= A, seq(coeff(P,x,j),j=0..n)
od:
A; # Robert Israel, Aug 12 2015
-
(* First program *)
p[x_, n_, q_]= If[n==0, 1, Product[x + q^i, {i,n}]];
Table[CoefficientList[p[x, n, 4], x], {n, 0, 10}]//Flatten (* modified by G. C. Greubel, Feb 20 2021 *)
(* Second program *)
T[n_, k_, q_]:= If[k<0 || k>n, 0, If[k==n, 1, q^n*T[n-1,k,q] +T[n-1,k-1,q] ]];
Table[T[n,k,4], {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Feb 20 2021 *)
-
def T(n, k, q):
if (k<0 or k>n): return 0
elif (k==n): return 1
else: return q^n*T(n-1,k,q) + T(n-1,k-1,q)
flatten([[T(n,k,4) for k in (0..n)] for n in (0..10)]) # G. C. Greubel, Feb 20 2021
A203148
(n-1)-st elementary symmetric function of {3,9,...,3^n}.
Original entry on oeis.org
1, 12, 351, 29160, 7144929, 5223002148, 11433166050879, 75035879252272080, 1477081305957768349761, 87223128348206814118735932, 15451489966710801620870785316511, 8211586182553137756809552940033725880, 13091937140529934508508023103481190655434529
Offset: 1
-
[(1/2)*(3^n -1)*3^(Binomial(n,2)): n in [1..20]]; // G. C. Greubel, Feb 24 2021
-
f[k_]:= 3^k; t[n_]:= Table[f[k], {k, 1, n}];
a[n_]:= SymmetricPolynomial[n - 1, t[n]];
Table[a[n], {n, 1, 16}] (* A203148 *)
Table[1/2 (3^n - 1) 3^Binomial[n, 2], {n, 1, 20}] (* Emanuele Munarini, Sep 14 2017 *)
-
[(1/2)*(3^n -1)*3^(binomial(n,2)) for n in (1..20)] # G. C. Greubel, Feb 24 2021
A348014
Triangle, read by rows, with row n forming the coefficients in Product_{k=0..n} (1 + k^k*x).
Original entry on oeis.org
1, 1, 1, 1, 5, 4, 1, 32, 139, 108, 1, 288, 8331, 35692, 27648, 1, 3413, 908331, 26070067, 111565148, 86400000, 1, 50069, 160145259, 42405161203, 1216436611100, 5205269945088, 4031078400000
Offset: 0
Triangle begins:
1;
1, 1;
1, 5, 4;
1, 32, 139, 108;
1, 288, 8331, 35692, 27648;
1, 3413, 908331, 26070067, 111565148, 86400000;
The diagonal of the triangle is
A002109.
-
T(n, k) = if(k==0, 1, if(k==n, prod(j=1, n, j^j), T(n-1, k)+n^n*T(n-1, k-1)));
-
row(n) = Vecrev(prod(k=1, n, 1+k^k*x));
Showing 1-4 of 4 results.
Comments