A173007 Triangle T(n,k) read by rows: coefficient [x^k] of the polynomial Product_{i=1..n} (x + q^i) in row n and q = 3.
1, 3, 1, 27, 12, 1, 729, 351, 39, 1, 59049, 29160, 3510, 120, 1, 14348907, 7144929, 882090, 32670, 363, 1, 10460353203, 5223002148, 650188539, 24698520, 297297, 1092, 1, 22876792454961, 11433166050879, 1427185336941, 54665851779, 674887059, 2685501, 3279, 1
Offset: 0
Examples
Triangle begins as: 1; 3, 1; 27, 12, 1; 729, 351, 39, 1; 59049, 29160, 3510, 120, 1; 14348907, 7144929, 882090, 32670, 363, 1; 10460353203, 5223002148, 650188539, 24698520, 297297, 1092, 1;
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Crossrefs
Programs
-
Magma
function T(n,k,q) if k lt 0 or k gt n then return 0; elif k eq n then return 1; else return q^n*T(n-1,k,q) + T(n-1,k-1,q); end if; return T; end function; [T(n,k,3): k in [0..n], n in [0..10]]; // G. C. Greubel, Feb 20 2021
-
Mathematica
(* First program *) p[x_, n_, q_] = If[n==0, 1, Product[x + q^i, {i, 1, n}]]; Table[CoefficientList[p[x, n, 3], x], {n, 0, 10}] (* modified by G. C. Greubel, Feb 20 2021 *) (* Second program *) T[n_, k_, q_]:= If[k<0 || k>n, 0, If[k==n, 1, q^n*T[n-1,k,q] +T[n-1,k-1,q] ]]; Table[T[n,k,3], {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Feb 20 2021 *)
-
Sage
def T(n, k, q): if (k<0 or k>n): return 0 elif (k==n): return 1 else: return q^n*T(n-1,k,q) + T(n-1,k-1,q) flatten([[T(n,k,3) for k in (0..n)] for n in (0..10)]) # G. C. Greubel, Feb 20 2021
Formula
p(x,n,q) = 1 if n=0, Product_{i=1..n} (x + q^i) otherwise, with q=3.
T(n,k) = 3^n*T(n-1,k) + T(n-1,k-1), T(0,0)=1. - Philippe Deléham, Oct 01 2011
Sum_{k=0..n} T(n, k, 4) = A290000(n+1). - G. C. Greubel, Feb 20 2021
Extensions
Edited by G. C. Greubel, Feb 20 2021
Comments