cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A173008 Triangle T(n,k) read by rows: coefficient [x^k] of the polynomial Product_{i=1..n} (x + q^i) in row n, column 0<=k<=n, and q = 4.

Original entry on oeis.org

1, 4, 1, 64, 20, 1, 4096, 1344, 84, 1, 1048576, 348160, 22848, 340, 1, 1073741824, 357564416, 23744512, 371008, 1364, 1, 4398046511104, 1465657589760, 97615085568, 1543393280, 5957952, 5460, 1, 72057594037927936, 24017731997138944, 1600791219535872, 25384570585088, 99158478848, 95414592, 21844, 1
Offset: 0

Views

Author

Roger L. Bagula, Feb 07 2010

Keywords

Comments

Row sums are 1, 5, 85, 5525, 1419925, 1455423125, 5962868543125, 97701601079103125, 6403069829921181503125, ... (partial products of A092896).
Triangle T(n,k), read by rows, given by [4,12,64,240,1024,4032,16384,...] DELTA [1,0,4,0,16,0,64,0,256,0,1024,0,...] where DELTA is the operator defined in A084938. - Philippe Deléham, Oct 01 2011

Examples

			Triangle begins as:
              1;
              4,             1;
             64,            20,           1;
           4096,          1344,          84,          1;
        1048576,        348160,       22848,        340,       1;
     1073741824,     357564416,    23744512,     371008,    1364,    1;
  4398046511104, 1465657589760, 97615085568, 1543393280, 5957952, 5460, 1;
		

Crossrefs

Cf. A023531 (q=0), A007318 (q=1), A108084 (q=2), A173007 (q=3), this sequence (q=4).

Programs

  • Magma
    function T(n,k,q)
      if k lt 0 or k gt n then return 0;
      elif k eq n then return 1;
      else return q^n*T(n-1,k,q) + T(n-1,k-1,q);
      end if; return T; end function;
    [T(n,k,4): k in [0..n], n in [0..10]]; // G. C. Greubel, Feb 20 2021
  • Maple
    P:= 1: A:= 1:
    for n from 1 to 12 do
      P:= expand(P*(x+4^n));
      A:= A, seq(coeff(P,x,j),j=0..n)
    od:
    A; # Robert Israel, Aug 12 2015
  • Mathematica
    (* First program *)
    p[x_, n_, q_]= If[n==0, 1, Product[x + q^i, {i,n}]];
    Table[CoefficientList[p[x, n, 4], x], {n, 0, 10}]//Flatten (* modified by G. C. Greubel, Feb 20 2021 *)
    (* Second program *)
    T[n_, k_, q_]:= If[k<0 || k>n, 0, If[k==n, 1, q^n*T[n-1,k,q] +T[n-1,k-1,q] ]];
    Table[T[n,k,4], {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Feb 20 2021 *)
  • Sage
    def T(n, k, q):
        if (k<0 or k>n): return 0
        elif (k==n): return 1
        else: return q^n*T(n-1,k,q) + T(n-1,k-1,q)
    flatten([[T(n,k,4) for k in (0..n)] for n in (0..10)]) # G. C. Greubel, Feb 20 2021
    

Formula

T(n,k) = 4^n*T(n-1,k) + T(n-1,k-1) with T(0,0)=1. - Philippe Deléham, Oct 01 2011
Sum_{k=0..n} T(n, k, 4) = A309327(n+1). - G. C. Greubel, Feb 20 2021

A290000 a(n) = Product_{k=1..n-1} (3^k + 1).

Original entry on oeis.org

1, 1, 4, 40, 1120, 91840, 22408960, 16358540800, 35792487270400, 234870301468364800, 4623187014103292723200, 272999193182799435304960000, 48361261073946554365403054080000, 25701205307660304745058529866383360000, 40976048450930207702360695570691784048640000
Offset: 0

Views

Author

Ilya Gutkovskiy, Jun 06 2020

Keywords

Crossrefs

Sequences of the form Product_{j=1..n-1} (m^j + 1): A000012 (m=0), A011782 (m=1), A028362 (m=2), this sequence (m=3), A309327 (m=4).

Programs

  • Magma
    [n lt 3 select 1 else (&*[3^j +1: j in [1..n-1]]): n in [1..20]]; // G. C. Greubel, Feb 21 2021
  • Mathematica
    Table[Product[3^k + 1, {k, 1, n - 1}], {n, 0, 14}]
  • PARI
    a(n) = prod(k=1, n-1, 3^k + 1); \\ Michel Marcus, Jun 06 2020
    
  • Sage
    from sage.combinat.q_analogues import q_pochhammer
    [1]+[3^(binomial(n,2))*q_pochhammer(n-1, -1/3, 1/3) for n in (1..20)] # G. C. Greubel, Feb 21 2021
    

Formula

G.f. A(x) satisfies: A(x) = 1 + x * A(3*x) / (1 - x).
G.f.: Sum_{k>=0} 3^(k*(k - 1)/2) * x^k / Product_{j=0..k-1} (1 - 3^j*x).
a(0) = 1; a(n) = Sum_{k=0..n-1} 3^k * a(k).
a(n) ~ c * 3^(n*(n - 1)/2), where c = Product_{k>=1} (1 + 1/3^k) = 1.564934018567011537938849... = A132324.
a(n) = 3^(binomial(n+1,2))*(-1/3;1/3){n}, where (a;q){n} is the q-Pochhammer symbol. - G. C. Greubel, Feb 21 2021
Showing 1-2 of 2 results.