cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A132341 Main diagonal of A132339.

Original entry on oeis.org

1, 2, 10, 168, 4290, 136136, 4938024, 196125600, 8318177010, 370784099400, 17184867259560, 821870841735840, 40334204896057800, 2022686389717666848, 103312949950998743200, 5360873347802169267840, 282015983963437605168210
Offset: 0

Views

Author

N. J. A. Sloane, Nov 08 2007

Keywords

Crossrefs

Cf. A132339.

Programs

  • Mathematica
    a[n_]:= If[n==0, 1, Binomial[2*n, n]*Binomial[4*n-2, 2*n-1]/(2*Binomial[2*n,2])];
    Table[a[n], {n, 0, 20}] (* G. C. Greubel, Dec 14 2021 *)
  • PARI
    a(n) = if (n, 2*(4*n-3)!/(n!^2*(2*n-1)!), 1); \\ Michel Marcus, Mar 27 2016
    
  • Sage
    b=binomial
    def a(n): return 1 if (n==0) else b(2*n, n)*b(4*n-2, 2*n-1)/(2*b(2*n,2))
    [a(n) for n in (0..20)] # G. C. Greubel, Dec 14 2021

Formula

a(n) = T(n, n), where T(n,k) if the array of A132339.
a(n) = A(2*n, n), where A(n, k) is the antidiagonal triangle of A132339.
a(n) ~ 2^(6*n - 9/2) / (Pi*n^3). - Vaclav Kotesovec, Mar 27 2016
a(n) = binomial(2*n, n)*binomial(4*n-2, 2*n-1)/((2*n)*(2*n-1)), with a(0) = 1. - G. C. Greubel, Dec 14 2021

Extensions

More terms from Max Alekseyev, Sep 12 2009