cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A221651 Numbers divisible by their first digit squared (excluding those whose first digit is 1).

Original entry on oeis.org

20, 24, 28, 36, 48, 50, 200, 204, 208, 212, 216, 220, 224, 228, 232, 236, 240, 244, 248, 252, 256, 260, 264, 268, 272, 276, 280, 284, 288, 292, 296, 306, 315, 324, 333, 342, 351, 360, 369, 378, 387, 396, 400, 416, 432, 448, 464, 480, 496, 500, 525, 550, 575
Offset: 1

Views

Author

Keywords

Comments

Numbers where floor(n/10^floor(log(n)))^2 divides n.

Examples

			48 is divisible by 4^2.
		

Crossrefs

Programs

  • R
    x=0; y=rep(0,1000); len=0
    firstdig<-function(x) as.numeric(substr(as.character(x),1,1))
    isint<-function(x) x==as.integer(x)
    while(len<10000) if((fd=firstdig((x=x+1)))>1) if(isint(x/fd^2)) y[(len=len+1)]=x

A225297 Numbers divisible by their last digit cubed.

Original entry on oeis.org

1, 11, 21, 31, 32, 41, 51, 61, 64, 71, 72, 81, 91, 101, 111, 112, 121, 125, 131, 141, 151, 152, 161, 171, 181, 191, 192, 201, 211, 216, 221, 231, 232, 241, 243, 251, 261, 271, 272, 281, 291, 301, 311, 312, 321, 331, 341, 351, 352, 361, 371, 375, 381, 384, 391
Offset: 1

Views

Author

Keywords

Comments

Numbers k such that (k mod 10)^3 | k.
All numbers ending in 1 are trivially included in this sequence.
The sequence is { 1+10k, 32 + 40k, 243 + 270k, 64 + 320k, 125 + 250k, 216 + 1080k, 3087 + 3430k, 2048 + 2560k, 729 + 7290k ; k = 0,1,2,...}. - M. F. Hasler, Jan 31 2016
The asymptotic density of this sequence is 2201597407/16003008000 = 0.137573... . - Amiram Eldar, Aug 08 2023

Examples

			a(16) = 112 is divisible by 2^3.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[400], (m = Mod[#, 10]) > 0 && Divisible[#, m^3] &] (* Amiram Eldar, Aug 08 2023 *)
  • PARI
    is(n)=n%10&&n%(n%10)^3==0 \\ M. F. Hasler, Jan 31 2016
  • R
    x=0; y=rep(0,100); len=0; isint<-function(x) x==as.integer(x); while(len<100) if((x=x+1)%%10>0) if(isint(x/(x%%10)^3)) y[(len=len+1)]=x
    

A225296 Numbers divisible by their first digit cubed (excluding those whose first digit is 1).

Original entry on oeis.org

24, 200, 208, 216, 224, 232, 240, 248, 256, 264, 272, 280, 288, 296, 324, 351, 378, 448, 500, 648, 2000, 2008, 2016, 2024, 2032, 2040, 2048, 2056, 2064, 2072, 2080, 2088, 2096, 2104, 2112, 2120, 2128, 2136, 2144, 2152, 2160, 2168, 2176, 2184, 2192, 2200, 2208
Offset: 1

Views

Author

Keywords

Comments

Numbers where floor(n/10^floor(log(n)))^3 | n.

Examples

			448 is divisible by 4^3.
		

Crossrefs

Programs

  • Mathematica
    dfdcQ[n_]:=Module[{fidn=IntegerDigits[n][[1]]},fidn!=1&&Divisible[ n,fidn^3]]; Select[Range[2500],dfdcQ] (* Harvey P. Dale, Jan 13 2019 *)
  • R
    x=0; y=rep(0,1000); len=0
    firstdig<-function(x) as.numeric(substr(as.character(x),1,1))
    isint<-function(x) x==as.integer(x)
    while(len<1000) if((fd=firstdig((x=x+1)))>1) if(isint(x/fd^3)) y[(len=len+1)]=x

A225722 Numbers divisible by their last digit cubed, excluding those whose last digit is 1.

Original entry on oeis.org

32, 64, 72, 112, 125, 152, 192, 216, 232, 243, 272, 312, 352, 375, 384, 392, 432, 472, 512, 513, 552, 592, 625, 632, 672, 704, 712, 729, 752, 783, 792, 832, 872, 875, 912, 952, 992, 1024, 1032, 1053, 1072, 1112, 1125, 1152, 1192, 1232, 1272, 1296, 1312, 1323
Offset: 1

Views

Author

Keywords

Comments

a(n) ~ n. For 69 < n < 10000, the formula 26.61*n - 2.76 provides an estimate of a(n) to within 1%.
The asymptotic density of this sequence is 601296607/16003008000 = 0.037573... . Therefore, contrary to the above comment, a(n) ~ c*n where c = 16003008000/601296607 = 26.614166... . - Amiram Eldar, Aug 08 2023

Examples

			a(5) = 125 is an example because its last digit is 5, and 5^3 = 125, and 125 is divisible by 125.
		

Crossrefs

Programs

  • Mathematica
    dldcQ[n_]:=Module[{ld=Last[IntegerDigits[n]]},ld>1&&Divisible[n,ld^3]]; Select[Range[1500],dldcQ] (* Harvey P. Dale, Aug 15 2014 *)
  • R
    which(sapply(1:1000,function(x) x%%10>1 & (v=x/(x%%10)^3)==as.integer(v) ))

A225299 Numbers divisible by the square of each digit.

Original entry on oeis.org

1, 11, 12, 36, 111, 112, 128, 144, 212, 216, 224, 333, 432, 448, 612, 1111, 1112, 1116, 1212, 1296, 1332, 1424, 2112, 2144, 2212, 2224, 2232, 2916, 3132, 3312, 3636, 4112, 4144, 4224, 4288, 4464, 6336, 6624, 8128, 8448, 9396, 11111, 11112, 11133, 11172, 11212
Offset: 1

Views

Author

Keywords

Comments

Includes all repunits.

Examples

			a(7) 128 is divisible by 1^2, by 2^2, and by 8^2.
		

Crossrefs

Programs

  • Mathematica
    d[n_]:=IntegerDigits[n]; t={}; Do[If[!MemberQ[d[n],0] && Union[Mod[n,d[n]^2]] == {0}, AppendTo[t,n]], {n,11220}]; t (* Jayanta Basu, May 15 2013 *)
    Select[Range[12000],DigitCount[#,10,0]==0&&And@@Divisible[ #,IntegerDigits[ #]^2]&] (* Harvey P. Dale, Jul 16 2018 *)
  • R
    isint<-function(x) x==as.integer(x)
    sqalldig<-function(x) as.numeric(strsplit(as.character(x),"")[[1]])^2
    divby<-function(x) ifelse(length(grep(0,x))>0,F,all(isint(x/sqalldig(x))))
    which(sapply(1:1000,divby))

A237275 Smallest k divisible by the n-th power of its last decimal digit > 1.

Original entry on oeis.org

2, 2, 12, 32, 32, 32, 192, 512, 512, 512, 3072, 8192, 8192, 8192, 49152, 131072, 131072, 131072, 786432, 2097152, 2097152, 2097152, 12582912, 33554432, 33554432, 33554432
Offset: 0

Views

Author

Michel Lagneau, Apr 22 2014

Keywords

Comments

Conjecture: a(n) == 2 (mod 10).

Examples

			a(0) = 2 because 2 is divisible by 2^0 = 1.
a(1) = 2 because 2 is divisible by 2^1 = 2.
a(2) = 12 because 12 is divisible by 2^2 = 4.
		

Crossrefs

Cf. A132359.

Programs

  • Mathematica
    Do[k=1;While[!Total[Transpose[IntegerDigits[k][[-1]]>0&&Mod[k,IntegerDigits[k][[-1]]^n]==0&&!Mod[k,10]==1],k++]];Print[n," ",k-1],{n,0,25}]

Formula

a(n) = 3*2^n if n mod 4 = 2; 2^(n+2-((n+1) mod 4)) otherwise. - Jon E. Schoenfield, Sep 12 2017
Showing 1-6 of 6 results.