cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A132359 Numbers divisible by the square of their last decimal digit.

Original entry on oeis.org

1, 11, 12, 21, 25, 31, 32, 36, 41, 51, 52, 61, 63, 64, 71, 72, 75, 81, 91, 92, 101, 111, 112, 121, 125, 128, 131, 132, 141, 144, 147, 151, 152, 153, 161, 171, 172, 175, 181, 191, 192, 201, 211, 212, 216, 221, 224, 225, 231, 232, 241, 243, 251, 252, 261, 271, 272
Offset: 1

Views

Author

Jonathan Vos Post, Nov 08 2007

Keywords

Comments

Subsequences are A017281 and A053742 representing last digits 1 and 5. Generators for the subsequences representing last digits 2, 3, 4, 6, 7, 8 and 9 are, in that order, the terms 12+20i, 63+90i, 64+80i, 36+180i, 147+490i, 128+320i, 729+810i, where i=0,1,2,... - R. J. Mathar, Nov 13 2007
This is a 10-automatic sequence. - Charles R Greathouse IV, Dec 28 2011

Examples

			147 belongs to the sequence because 147/7^2 = 3.
		

Crossrefs

Programs

  • Maple
    isA132359 := proc(n) local ldig ; ldig := n mod 10 ; if ldig <> 0 and n mod (ldig^2) = 0 then true ; else false ; fi ; end: for n from 1 to 400 do if isA132359(n) then printf("%d,",n) ; fi ; od: # R. J. Mathar, Nov 13 2007
    a:=proc(n) local nn: nn:=convert(n,base,10): if 0 < nn[1] and `mod`(n,nn[1]^2) =0 then n else end if end proc: seq(a(n),n=1..250); # Emeric Deutsch, Nov 15 2007
  • Mathematica
    Select[Range[250], IntegerDigits[ # ][[ -1]] > 0 && Mod[ #, IntegerDigits[ # ][[ -1]]^2] == 0 &] (* Stefan Steinerberger, Nov 12 2007 *)
    dsldQ[n_]:=Module[{lidnsq=Last[IntegerDigits[n]]^2},lidnsq!=0 && Divisible[n,lidnsq]]; Select[Range[300],dsldQ] (* Harvey P. Dale, May 03 2011 *)
  • PARI
    is(n)=n%(n%10)^2==0 \\ Charles R Greathouse IV, Dec 28 2011
    
  • Python
    def ok(n): return n%10 > 0 and n%(n%10)**2 == 0
    print([k for k in range(273) if ok(k)]) # Michael S. Branicky, Jul 03 2022
  • R
    which(sapply(1:500,function(x) isint(x/(x%%10)^2))) # Christian N. K. Anderson, May 04 2013
    

Formula

Numbers k such that fp[k / (k mod 10)] = 0.
a(n) ~ 6350400*n/1241929 = 5.113...*n. - Charles R Greathouse IV, Dec 28 2011

Extensions

Corrected and extended by Stefan Steinerberger, Emeric Deutsch and R. J. Mathar, Nov 12 2007

A225722 Numbers divisible by their last digit cubed, excluding those whose last digit is 1.

Original entry on oeis.org

32, 64, 72, 112, 125, 152, 192, 216, 232, 243, 272, 312, 352, 375, 384, 392, 432, 472, 512, 513, 552, 592, 625, 632, 672, 704, 712, 729, 752, 783, 792, 832, 872, 875, 912, 952, 992, 1024, 1032, 1053, 1072, 1112, 1125, 1152, 1192, 1232, 1272, 1296, 1312, 1323
Offset: 1

Views

Author

Keywords

Comments

a(n) ~ n. For 69 < n < 10000, the formula 26.61*n - 2.76 provides an estimate of a(n) to within 1%.
The asymptotic density of this sequence is 601296607/16003008000 = 0.037573... . Therefore, contrary to the above comment, a(n) ~ c*n where c = 16003008000/601296607 = 26.614166... . - Amiram Eldar, Aug 08 2023

Examples

			a(5) = 125 is an example because its last digit is 5, and 5^3 = 125, and 125 is divisible by 125.
		

Crossrefs

Programs

  • Mathematica
    dldcQ[n_]:=Module[{ld=Last[IntegerDigits[n]]},ld>1&&Divisible[n,ld^3]]; Select[Range[1500],dldcQ] (* Harvey P. Dale, Aug 15 2014 *)
  • R
    which(sapply(1:1000,function(x) x%%10>1 & (v=x/(x%%10)^3)==as.integer(v) ))

A225683 Numbers divisible by their first digit squared.

Original entry on oeis.org

1, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 24, 28, 36, 48, 50, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150
Offset: 1

Views

Author

N. J. A. Sloane, May 19 2013

Keywords

Comments

Added for completeness. A221651 is a much more interesting version.

Crossrefs

Cf. A221651.
Showing 1-3 of 3 results.