A132364 Expansion of 1/(1-x^2*c(x)), c(x) the g.f. of A000108.
1, 0, 1, 1, 3, 7, 20, 59, 184, 593, 1964, 6642, 22845, 79667, 281037, 1001092, 3595865, 13009673, 47366251, 173415176, 638044203, 2357941142, 8748646386, 32576869203, 121701491701, 456012458965, 1713339737086
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Paul Barry, A note on Krawtchouk Polynomials and Riordan Arrays, JIS 11 (2008) 08.2.2.
- George Beck and Karl Dilcher, A Matrix Related to Stern Polynomials and the Prouhet-Thue-Morse Sequence, arXiv:2106.10400 [math.CO], 2021.
Programs
-
Mathematica
a[0] := 1; a[n_] := Sum[(k/(n - k))*Binomial[2*n - 3*k - 1, n - 2*k], {k, 0, Floor[n/2]}]; Table[a[n], {n,0,25}] (* G. C. Greubel, Oct 19 2016 *)
-
PARI
c(x) = (1 - sqrt(1 - 4*x)) / (2*x); \\ A000108 my(x='x+O('x^30)); Vec(1/(1-x^2*c(x))) \\ Michel Marcus, Nov 13 2022
Formula
a(0)=1, a(n) = Sum_{k=0..floor(n/2)} (k/(n-k))*C(2*n-3*k-1,n-2*k), n>0.
G.f.: (2-x-x*sqrt(1-4*x))/(2-2*x+2*x^3). - Philippe Deléham, Feb 24 2013
Conjecture: +(-n+1)*a(n) +(5*n-11)*a(n-1) +2*(-2*n+5)*a(n-2) +(-n+1)*a(n-3) +2*(2*n-5)*a(n-4)=0. - R. J. Mathar, Aug 28 2015
a(n) ~ 2^(2*n + 2) / (49 * sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Nov 13 2022
Extensions
Typo in a(n) term corrected Johannes W. Meijer, Sep 13 2010
Comments