cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A132364 Expansion of 1/(1-x^2*c(x)), c(x) the g.f. of A000108.

Original entry on oeis.org

1, 0, 1, 1, 3, 7, 20, 59, 184, 593, 1964, 6642, 22845, 79667, 281037, 1001092, 3595865, 13009673, 47366251, 173415176, 638044203, 2357941142, 8748646386, 32576869203, 121701491701, 456012458965, 1713339737086
Offset: 0

Views

Author

Philippe Deléham, Nov 08 2007

Keywords

Comments

Diagonal sums of A106566.

Crossrefs

Programs

  • Mathematica
    a[0] := 1; a[n_] := Sum[(k/(n - k))*Binomial[2*n - 3*k - 1, n - 2*k], {k, 0, Floor[n/2]}]; Table[a[n], {n,0,25}] (* G. C. Greubel, Oct 19 2016 *)
  • PARI
    c(x) = (1 - sqrt(1 - 4*x)) / (2*x); \\ A000108
    my(x='x+O('x^30)); Vec(1/(1-x^2*c(x))) \\ Michel Marcus, Nov 13 2022

Formula

a(0)=1, a(n) = Sum_{k=0..floor(n/2)} (k/(n-k))*C(2*n-3*k-1,n-2*k), n>0.
G.f.: (2-x-x*sqrt(1-4*x))/(2-2*x+2*x^3). - Philippe Deléham, Feb 24 2013
Conjecture: +(-n+1)*a(n) +(5*n-11)*a(n-1) +2*(-2*n+5)*a(n-2) +(-n+1)*a(n-3) +2*(2*n-5)*a(n-4)=0. - R. J. Mathar, Aug 28 2015
a(n) ~ 2^(2*n + 2) / (49 * sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Nov 13 2022

Extensions

Typo in a(n) term corrected Johannes W. Meijer, Sep 13 2010