cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A106566 Triangle T(n,k), 0 <= k <= n, read by rows, given by [0, 1, 1, 1, 1, 1, 1, 1, ... ] DELTA [1, 0, 0, 0, 0, 0, 0, 0, ... ] where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 2, 2, 1, 0, 5, 5, 3, 1, 0, 14, 14, 9, 4, 1, 0, 42, 42, 28, 14, 5, 1, 0, 132, 132, 90, 48, 20, 6, 1, 0, 429, 429, 297, 165, 75, 27, 7, 1, 0, 1430, 1430, 1001, 572, 275, 110, 35, 8, 1, 0, 4862, 4862, 3432, 2002, 1001, 429, 154, 44, 9, 1
Offset: 0

Views

Author

Philippe Deléham, May 30 2005

Keywords

Comments

Catalan convolution triangle; g.f. for column k: (x*c(x))^k with c(x) g.f. for A000108 (Catalan numbers).
Riordan array (1, xc(x)), where c(x) the g.f. of A000108; inverse of Riordan array (1, x*(1-x)) (see A109466).
Diagonal sums give A132364. - Philippe Deléham, Nov 11 2007

Examples

			Triangle begins:
  1;
  0,   1;
  0,   1,   1;
  0,   2,   2,  1;
  0,   5,   5,  3,  1;
  0,  14,  14,  9,  4,  1;
  0,  42,  42, 28, 14,  5, 1;
  0, 132, 132, 90, 48, 20, 6, 1;
From _Paul Barry_, Sep 28 2009: (Start)
Production array is
  0, 1,
  0, 1, 1,
  0, 1, 1, 1,
  0, 1, 1, 1, 1,
  0, 1, 1, 1, 1, 1,
  0, 1, 1, 1, 1, 1, 1,
  0, 1, 1, 1, 1, 1, 1, 1,
  0, 1, 1, 1, 1, 1, 1, 1, 1,
  0, 1, 1, 1, 1, 1, 1, 1, 1, 1 (End)
		

Crossrefs

The three triangles A059365, A106566 and A099039 are the same except for signs and the leading term.
See also A009766, A033184, A059365 for other versions.
The following are all versions of (essentially) the same Catalan triangle: A009766, A030237, A033184, A059365, A099039, A106566, A130020, A047072.

Programs

  • Magma
    A106566:= func< n,k | n eq 0 select 1 else (k/n)*Binomial(2*n-k-1, n-k) >;
    [A106566(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Sep 06 2021
    
  • Maple
    A106566 := proc(n,k)
        if n = 0 then
            1;
        elif k < 0 or k > n then
            0;
        else
            binomial(2*n-k-1,n-k)*k/n ;
        end if;
    end proc: # R. J. Mathar, Mar 01 2015
  • Mathematica
    T[n_, k_] := Binomial[2n-k-1, n-k]*k/n; T[0, 0] = 1; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Feb 18 2017 *)
    (* The function RiordanArray is defined in A256893. *)
    RiordanArray[1&, #(1-Sqrt[1-4#])/(2#)&, 11] // Flatten (* Jean-François Alcover, Jul 16 2019 *)
  • PARI
    {T(n, k) = if( k<=0 || k>n, n==0 && k==0, binomial(2*n - k, n) * k/(2*n - k))}; /* Michael Somos, Oct 01 2022 */
  • Sage
    def A106566(n, k): return 1 if (n==0) else (k/n)*binomial(2*n-k-1, n-k)
    flatten([[A106566(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Sep 06 2021
    

Formula

T(n, k) = binomial(2n-k-1, n-k)*k/n for 0 <= k <= n with n > 0; T(0, 0) = 1; T(0, k) = 0 if k > 0.
T(0, 0) = 1; T(n, 0) = 0 if n > 0; T(0, k) = 0 if k > 0; for k > 0 and n > 0: T(n, k) = Sum_{j>=0} T(n-1, k-1+j).
Sum_{j>=0} T(n+j, 2j) = binomial(2n-1, n), n > 0.
Sum_{j>=0} T(n+j, 2j+1) = binomial(2n-2, n-1), n > 0.
Sum_{k>=0} (-1)^(n+k)*T(n, k) = A064310(n). T(n, k) = (-1)^(n+k)*A099039(n, k).
Sum_{k=0..n} T(n, k)*x^k = A000007(n), A000108(n), A000984(n), A007854(n), A076035(n), A076036(n), A127628(n), A126694(n), A115970(n) for x = 0,1,2,3,4,5,6,7,8 respectively.
Sum_{k>=0} T(n, k)*x^(n-k) = C(x, n); C(x, n) are the generalized Catalan numbers.
Sum_{j=0..n-k} T(n+k,2*k+j) = A039599(n,k).
Sum_{j>=0} T(n,j)*binomial(j,k) = A039599(n,k).
Sum_{k=0..n} T(n,k)*A000108(k) = A127632(n).
Sum_{k=0..n} T(n,k)*(x+1)^k*x^(n-k) = A000012(n), A000984(n), A089022(n), A035610(n), A130976(n), A130977(n), A130978(n), A130979(n), A130980(n), A131521(n) for x= 0,1,2,3,4,5,6,7,8,9 respectively. - Philippe Deléham, Aug 25 2007
Sum_{k=0..n} T(n,k)*A000108(k-1) = A121988(n), with A000108(-1)=0. - Philippe Deléham, Aug 27 2007
Sum_{k=0..n} T(n,k)*(-x)^k = A000007(n), A126983(n), A126984(n), A126982(n), A126986(n), A126987(n), A127017(n), A127016(n), A126985(n), A127053(n) for x = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 respectively. - Philippe Deléham, Oct 27 2007
T(n,k)*2^(n-k) = A110510(n,k); T(n,k)*3^(n-k) = A110518(n,k). - Philippe Deléham, Nov 11 2007
Sum_{k=0..n} T(n,k)*A000045(k) = A109262(n), A000045: Fibonacci numbers. - Philippe Deléham, Oct 28 2008
Sum_{k=0..n} T(n,k)*A000129(k) = A143464(n), A000129: Pell numbers. - Philippe Deléham, Oct 28 2008
Sum_{k=0..n} T(n,k)*A100335(k) = A002450(n). - Philippe Deléham, Oct 30 2008
Sum_{k=0..n} T(n,k)*A100334(k) = A001906(n). - Philippe Deléham, Oct 30 2008
Sum_{k=0..n} T(n,k)*A099322(k) = A015565(n). - Philippe Deléham, Oct 30 2008
Sum_{k=0..n} T(n,k)*A106233(k) = A003462(n). - Philippe Deléham, Oct 30 2008
Sum_{k=0..n} T(n,k)*A151821(k+1) = A100320(n). - Philippe Deléham, Oct 30 2008
Sum_{k=0..n} T(n,k)*A082505(k+1) = A144706(n). - Philippe Deléham, Oct 30 2008
Sum_{k=0..n} T(n,k)*A000045(2k+2) = A026671(n). - Philippe Deléham, Feb 11 2009
Sum_{k=0..n} T(n,k)*A122367(k) = A026726(n). - Philippe Deléham, Feb 11 2009
Sum_{k=0..n} T(n,k)*A008619(k) = A000958(n+1). - Philippe Deléham, Nov 15 2009
Sum_{k=0..n} T(n,k)*A027941(k+1) = A026674(n+1). - Philippe Deléham, Feb 01 2014
G.f.: Sum_{n>=0, k>=0} T(n, k)*x^k*z^n = 1/(1 - x*z*c(z)) where c(z) the g.f. of A000108. - Michael Somos, Oct 01 2022

Extensions

Formula corrected by Philippe Deléham, Oct 31 2008
Corrected by Philippe Deléham, Sep 17 2009
Corrected by Alois P. Heinz, Aug 02 2012

A030238 Backwards shallow diagonal sums of Catalan triangle A009766.

Original entry on oeis.org

1, 1, 3, 7, 20, 59, 184, 593, 1964, 6642, 22845, 79667, 281037, 1001092, 3595865, 13009673, 47366251, 173415176, 638044203, 2357941142, 8748646386, 32576869203, 121701491701, 456012458965, 1713339737086, 6453584646837, 24364925260024, 92185136438942
Offset: 0

Views

Author

Keywords

Comments

Number of linear forests of planted planar trees with n nodes (Christian G. Bower).
Number of ordered trees with n+2 edges and having no branches of length 1 starting from the root. Example: a(1)=1 because the only ordered tree with 3 edges having no branch of length 1 starting from the root is the path tree of length 3. a(n) = A127158(n+2,0). - Emeric Deutsch, Mar 01 2007
Hankel transform is A056520. - Paul Barry, Oct 16 2007

Crossrefs

Programs

  • Maple
    g:=(1-sqrt(1-4*z))/z/(2-z+z*sqrt(1-4*z)): gser:=series(g,z=0,30): seq(coeff(gser,z,n),n=0..25); # Emeric Deutsch, Mar 01 2007
  • Mathematica
    Sum[ triangle[ n-k, (n-k)-(k-1) ], {k, 1, Floor[ (n+1)/2 ]} ]
    CoefficientList[Series[(1-Sqrt[1-4*x])/x/(2-x+x*Sqrt[1-4*x]), {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 13 2014 *)

Formula

INVERT transform of 1, 2, 2, 5, 14, 42, 132, ... (cf. A000108).
a(n) = Sum_{k=0..floor(n/2)} (k+1)*binomial(2*n-3*k+1, n-k+1)/(2*n-3*k+1). Diagonal sums of A033184. - Paul Barry, Jun 22 2004
a(n) = Sum_{k=0..floor(n/2)} (k+1)*binomial(2*n-3*k, n-k)/(n-k+1). - Paul Barry, Feb 02 2005
G.f.: (1-sqrt(1-4*z))/(z*(2-z+z*sqrt(1-4*z))). - Emeric Deutsch, Mar 01 2007
G.f.: c(z)/(1-z^2*c(z)) where c(z) = (1-sqrt(1-4*z))/(2*z). - Ira M. Gessel, Sep 21 2020
D-finite with recurrence: (n+1)*a(n) + (-5*n+1)*a(n-1) + 2*(2*n-1)*a(n-2) + (n+1)*a(n-3) + 2*(-2*n+1)*a(n-4) = 0. - R. J. Mathar, Nov 30 2012
a(n) = Sum_{k=0..n} A000108(k)*A132364(n-k). - Philippe Deléham, Feb 27 2013
a(n) ~ 2^(2*n+6) / (49 * sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Feb 13 2014

Extensions

More terms from Christian G. Bower, Apr 15 1998

A176287 Diagonal sums of number triangle A092392.

Original entry on oeis.org

1, 2, 7, 23, 81, 291, 1066, 3955, 14818, 55937, 212428, 810664, 3106167, 11942261, 46047897, 178000950, 689580319, 2676598447, 10406929687, 40525045518, 158022343991, 616950024334, 2411395005316, 9434753907065, 36948692202031
Offset: 0

Views

Author

Paul Barry, Apr 14 2010

Keywords

Comments

Hankel transform is A176288.

Crossrefs

Programs

  • GAP
    List([0..25], n-> Sum([0..Int(n/2)], k-> Binomial(2*n-3*k, n-k) )); # G. C. Greubel, Nov 25 2019
  • Magma
    [ &+[Binomial(2*n-3*k, n-k): k in [0..Floor(n/2)]] : n in [0..25]]; // G. C. Greubel, Nov 25 2019
    
  • Maple
    seq( add(binomial(2*n-3*k, n-k), k=0..floor(n/2)) , n=0..25); # G. C. Greubel, Nov 25 2019
  • Mathematica
    CoefficientList[Series[2/(Sqrt[1-4*x]*(2-x+x*Sqrt[1-4*x])), {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 04 2014 *)
    a[n_]:= Sum[Binomial[2*n-3*k, n-k], {k, 0, Floor[n/2]}]; Table[a[n], {n,0,25}] (* G. C. Greubel, Oct 19 2016 *)
  • PARI
    a(n) = sum(k=0, n\2, binomial(2*n-3*k, n-k)); \\ Michel Marcus, Oct 20 2016
    
  • Sage
    [sum(binomial(2*n-3*k, n-k) for k in (0..floor(n/2))) for n in (0..25)] # G. C. Greubel, Nov 25 2019
    

Formula

G.f.: 1/(sqrt(1-4*x)*(1-x^2*c(x))) = 2/(sqrt(1-4*x)*(2-x+x*sqrt(1-4*x))), c(x) the g.f. of A000108.
a(n) = Sum_{k=0..floor(n/2)} C(2n-3k,n-k).
a(n) = Sum_{k=0..n} A000984(k)*A132364(n-k).
D-finite with recurrence: 2*n*a(n) +(6-11*n)*a(n-1) +(13*n-16)*a(n-2) +2*(5-n)*a(n-3) +3*(2-3*n)*a(n-4) +2*(2*n-5)*a(n-5)=0. - R. J. Mathar, Nov 15 2012 [Verified with Maple's FindRE and MinimalRecurrence functions, Georg Fischer, Nov 03 2022]
a(n) ~ 2^(2*n+3) / (7*sqrt(Pi*n)). - Vaclav Kotesovec, Feb 04 2014

A135582 Expansion of 1/((1-x^2*c(x))(1-x-2x^2)) where c(x) is the g.f. of A000108.

Original entry on oeis.org

1, 1, 4, 7, 18, 39, 95, 232, 606, 1663, 4839, 14807, 47330, 156611, 532308, 1846622, 6507103, 23210020, 83590477, 303425693, 1108650850, 4073443378, 15039391464, 55763147423, 207543422052, 775082175863, 2903508757053, 10907257755616
Offset: 0

Views

Author

Paul Barry, Apr 15 2008

Keywords

Comments

Diagonal sums of the Jacobsthal-Catalan triangle A139377.

Crossrefs

Programs

  • Mathematica
    Jacobsthal[n_]:= (2^n - (-1)^n)/3; g[0]:= 1; g[n_] := Sum[(i/(n - i)) * Binomial[2*n - 3*i - 1, n - 2*i], {i, 0, Floor[n/2]}]; a[n_]:= Sum[Jacobsthal[k + 1]*g[n - k], {k, 0, n}]; Table[a[n], {n, 0, 25}] (* G. C. Greubel, Oct 20 2016 *)

Formula

a(n) = Sum_{k=0..n} J(k+1)*A132364(n-k) where J(n)=A001045(n), Jacobsthal numbers.
Conjecture: (-n+1)*a(n) +6*(n-2)*a(n-1) +(-7*n+19)*a(n-2) +(-7*n+13)*a(n-3) +(13*n-31)*a(n-4) +2*(-n+4)*a(n-5) +4*(-2*n+5)*a(n-6)=0. - R. J. Mathar, Feb 23 2015

A139376 Expansion of 1/((1-x^2*c(x))(1-x-x^2)) where c(x) is the g.f. of A000108.

Original entry on oeis.org

1, 1, 3, 5, 11, 23, 54, 136, 374, 1103, 3441, 11186, 37472, 128325, 446834, 1576251, 5618950, 20204874, 73190075, 266810125, 978044403, 3602795670, 13329486459, 49509151332, 184540129492, 690061739789, 2587941606367, 9731587992993
Offset: 0

Views

Author

Paul Barry, Apr 15 2008

Keywords

Comments

Diagonal sums of the Fibonacci-Catalan triangle A139375.

Programs

  • Mathematica
    g[0]:= 1; g[n_]:= Sum[(i/(n - i))*Binomial[2*n - 3*i - 1, n - 2*i], {i, 0, Floor[n/2]}]; a[n_] := Sum[Fibonacci[k + 1]*g[n - k], {k, 0, n}]; Table[a[n], {n, 0, 25}] (* G. C. Greubel, Oct 20 2016 *)

Formula

a(n) = Sum_{k=0..n} F(k+1)*A132364(n-k).
Conjecture: (-n+1)*a(n) +6*(n-2)*a(n-1) +4*(-2*n+5)*a(n-2) +2*(-n+1)*a(n-3) +3*(3*n-7)*a(n-4) +3*(-n+3)*a(n-5) +2*(-2*n+5)*a(n-6)=0. - R. J. Mathar, Feb 05 2015
Showing 1-5 of 5 results.