A132385 Number of distinct primes among the cubes mod n.
0, 0, 1, 1, 2, 3, 0, 3, 0, 4, 4, 4, 1, 2, 6, 5, 6, 1, 2, 7, 2, 8, 8, 8, 8, 2, 2, 2, 9, 10, 3, 10, 11, 11, 3, 2, 4, 5, 3, 11, 12, 4, 3, 13, 3, 14, 14, 14, 4, 14, 15, 4, 15, 4, 16, 5, 5, 16, 16, 16, 6, 6, 0, 17, 5, 18, 5, 18, 19, 5
Offset: 1
Examples
a(10) = 4 because the cubes mod 10 repeat 0, 1, 8, 7, 4, 5, 6, 3, 2, 9, 0, 1, 8, 7, 4, 5, ... of which the 4 distinct primes are {2, 3, 5, 7}.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
f:= proc(n) if numtheory:-phi(n) mod 3 = 0 then nops(select(isprime, {seq(i^3 mod n, i=0..n-1)})) else numtheory:-pi(n-1) - nops(select(t -> t[2]>1, ifactors(n)[2])) fi end proc: map(f, [$1..100]); # Robert Israel, Jun 28 2018
-
Mathematica
Table[Length[Select[Union[Table[Mod[i^3, n], {i, 0, n}], Table[Mod[i^3, n], {i, 0, n}]], PrimeQ[ # ] &]], {n, 1, 70}] (* Stefan Steinerberger, Nov 12 2007 *)
Formula
a(n) = Card{p = k^3 mod n, for primes p and for all integers k}.
Extensions
More terms from Stefan Steinerberger, Nov 12 2007
Spelling/notation corrections by Charles R Greathouse IV, Mar 18 2010
Comments