A132458 Let df(n,k) = Product_{i=0..k-1} (n-i) be the descending factorial and let P(m,n) = df(n-1,m-1)^2*(2*n-m)/((m-1)!*m!). Sequence gives P(4,n).
0, 0, 0, 1, 24, 200, 1000, 3675, 10976, 28224, 64800, 136125, 266200, 490776, 861224, 1449175, 2352000, 3699200, 5659776, 8450649, 12346200, 17689000, 24901800, 34500851, 47110624, 63480000, 84500000, 111223125, 144884376, 186924024, 239012200, 303075375
Offset: 1
Keywords
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (8,-28,56,-70,56,-28,8,-1).
Programs
-
Magma
[(n-3)^2*(n-2)^3*(n-1)^2/72: n in [1..40]]; // Vincenzo Librandi, Aug 06 2017
-
Maple
df:=proc(n,k) mul(n-i,i=0..k-1); end; P:=proc(n,k) df(k-1,n-1)^2*(2*k-n)/((n-1)!*n!); end; [seq(P(4,n),n=1..50)];
-
Mathematica
CoefficientList[Series[x^3 (1 + 16 x + 36 x^2 + 16 x^3 + x^4) / (1 - x)^8, {x, 0, 33}], x] (* Vincenzo Librandi, Aug 06 2017 *)
Formula
From Bruno Berselli, Dec 29 2010: (Start)
a(n) = (n-3)^2*(n-2)^3*(n-1)^2/72.
G.f.: x^4*(1+16*x+36*x^2+16*x^3+x^4)/(1-x)^8. (End)
Sum_{n>=4} 1/a(n) = 72*zeta(3) - 171/2. - Jaume Oliver Lafont, Aug 06 2017
Sum_{n>=4} (-1)^n/a(n) = 531/2 - 288*log(2) - 54*zeta(3). - Amiram Eldar, Sep 20 2022
Comments