cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A132458 Let df(n,k) = Product_{i=0..k-1} (n-i) be the descending factorial and let P(m,n) = df(n-1,m-1)^2*(2*n-m)/((m-1)!*m!). Sequence gives P(4,n).

Original entry on oeis.org

0, 0, 0, 1, 24, 200, 1000, 3675, 10976, 28224, 64800, 136125, 266200, 490776, 861224, 1449175, 2352000, 3699200, 5659776, 8450649, 12346200, 17689000, 24901800, 34500851, 47110624, 63480000, 84500000, 111223125, 144884376, 186924024, 239012200, 303075375
Offset: 1

Views

Author

Ottavio D'Antona (dantona(AT)dico.unimi.it), Oct 31 2007

Keywords

Comments

P(m,n) is the number of n-step paths that start from (0,0) and reach (m,m) for the first time, where the steps are of the following 4 types: N=(x,y)->(x,y+1), E=(x,y)->(x+1,y), NE=(x,y)->(x+1,y+1), LOOP=(x,y)->(x,y).
For m = 1 through 8 we get respectively A005408, A000578, A108674, this sequence, A133317, A132464, A132465, A132466.

Crossrefs

Programs

  • Magma
    [(n-3)^2*(n-2)^3*(n-1)^2/72: n in [1..40]]; // Vincenzo Librandi, Aug 06 2017
  • Maple
    df:=proc(n,k) mul(n-i,i=0..k-1); end; P:=proc(n,k) df(k-1,n-1)^2*(2*k-n)/((n-1)!*n!); end; [seq(P(4,n),n=1..50)];
  • Mathematica
    CoefficientList[Series[x^3 (1 + 16 x + 36 x^2 + 16 x^3 + x^4) / (1 - x)^8, {x, 0, 33}], x] (* Vincenzo Librandi, Aug 06 2017 *)

Formula

From Bruno Berselli, Dec 29 2010: (Start)
a(n) = (n-3)^2*(n-2)^3*(n-1)^2/72.
G.f.: x^4*(1+16*x+36*x^2+16*x^3+x^4)/(1-x)^8. (End)
Sum_{n>=4} 1/a(n) = 72*zeta(3) - 171/2. - Jaume Oliver Lafont, Aug 06 2017
Sum_{n>=4} (-1)^n/a(n) = 531/2 - 288*log(2) - 54*zeta(3). - Amiram Eldar, Sep 20 2022