cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A132626 Column 0 of triangle A132625.

Original entry on oeis.org

1, 1, 2, 14, 336, 25836, 6251504, 4838830976, 12344615283200, 106978340796778976, 3229124399759665954432, 346176173916459184212747520, 133788163509847808639178273046528
Offset: 0

Views

Author

Paul D. Hanna, Aug 25 2007

Keywords

Comments

Triangle T=A132625 is generated by matrix powers of itself such that row n+1 of T = row n of T^(2^n) with appended '1' for n>=0 with T(0,0)=1.

Crossrefs

Programs

  • PARI
    {a(n)=local(A=vector(n+1), p); A[1]=1; for(j=1, n, p=2^n-2^(n-j)-j; A=Vec((Polrev(A)+x*O(x^p))/(1-x))); A[p+1]}

A132627 Column 1 of triangle A132625.

Original entry on oeis.org

1, 1, 4, 60, 2960, 454072, 216266368, 328381917376, 1646431825247488, 28147649085162289088, 1682689316516069630268928, 358405429181246295625283815424, 275845379756819156941815068510302208
Offset: 0

Views

Author

Paul D. Hanna, Aug 25 2007

Keywords

Comments

Triangle T=A132625 is generated by matrix powers of itself such that row n+1 of T = row n of T^(2^n) with appended '1' for n>=0 with T(0,0)=1.

Crossrefs

Programs

  • PARI
    {a(n)=local(A=vector(n+1), p); A[1]=1; for(j=1, n, p=2^(n+1)-2^(n-j+1)-j; A=Vec((Polrev(A)+x*O(x^p))/(1-x))); A[p+1]}

A136555 Square array, read by antidiagonals, where T(n,k) = binomial(2^k + n-1, k).

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 1, 3, 6, 35, 1, 4, 10, 56, 1365, 1, 5, 15, 84, 1820, 169911, 1, 6, 21, 120, 2380, 201376, 67945521, 1, 7, 28, 165, 3060, 237336, 74974368, 89356415775, 1, 8, 36, 220, 3876, 278256, 82598880, 94525795200, 396861704798625, 1, 9, 45, 286, 4845, 324632, 90858768, 99949406400, 409663695276000, 6098989894499557055
Offset: 0

Views

Author

Paul D. Hanna, Jan 07 2008

Keywords

Comments

Let vector R_{n} equal row n of this array; then R_{n+1} = P * R_{n} for n>=0, where triangle P = A132625 such that row n+1 of P = row n of P^(2^n) with appended '1' for n>=0.

Examples

			Square array begins:
  1, 1,  3,  35, 1365, 169911,  67945521,  89356415775, ... A136556;
  1, 2,  6,  56, 1820, 201376,  74974368,  94525795200, ... A014070;
  1, 3, 10,  84, 2380, 237336,  82598880,  99949406400, ... A136505;
  1, 4, 15, 120, 3060, 278256,  90858768, 105637584000, ... A136506;
  1, 5, 21, 165, 3876, 324632,  99795696, 111600996000, ... ;
  1, 6, 28, 220, 4845, 376992, 109453344, 117850651776, ... ;
  1, 7, 36, 286, 5985, 435897, 119877472, 124397910208, ... ;
  1, 8, 45, 364, 7315, 501942, 131115985, 131254487936, ... ;
  ...
Form column vector R_{n} out of row n of this array;
then row n+1 can be generated from row n by:
R_{n+1} = P * R_{n} for n>=0,
where triangular matrix P = A132625 begins:
        1;
        1,      1;
        2,      1,     1;
       14,      4,     1,    1;
      336,     60,     8,    1,  1;
    25836,   2960,   248,   16,  1, 1;
  6251504, 454072, 24800, 1008, 32, 1, 1; ...
where row n+1 of P = row n of P^(2^n) with appended '1' for n>=0.
		

Crossrefs

Diagonals: A060690, A132683, A132684.
Cf. A136557 (antidiagonal sums).
Cf. A132625.

Programs

  • Magma
    [Binomial(2^k +n-k-1, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Mar 14 2021
  • Maple
    A136555:= (n,k) -> binomial(2^k +n-k-1, k); seq(seq(A136555(n,k), k=0..n), n=0..12); # G. C. Greubel, Mar 14 2021
  • Mathematica
    Table[Binomial[2^k +n-k-1, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Mar 14 2021 *)
  • PARI
    T(n,k)=binomial(2^k+n-1,k)
    
  • PARI
    /* Coefficient of x^k in g.f. of row n: */ T(n,k)=polcoeff(sum(i=0,k,(1+2^i*x+x*O(x^k))^(n-1)*log((1+2^i*x)+x*O(x^k))^i/i!),k)
    
  • Sage
    flatten([[binomial(2^k +n-k-1, k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Mar 14 2021
    

Formula

G.f. for row n: Sum_{i>=0} (1 + 2^i*x)^(n-1) * log(1 + 2^i*x)^i / i!.
From G. C. Greubel, Mar 14 2021: (Start)
For the square array:
T(n, n) = A060690(n).
T(n+1, n) = A132683(n), T(n+2, n) = A132684(n).
T(2*n+1, n) = A132685(n), T(2*n, n) = A132686(n).
T(3*n+2, n) = A132689(n), T(3*n+1, n) = A132688(n), T(3*n, n) = A132687(n).
For the number triangle:
t(n, k) = T(n-k, k) = binomial(2^k + n - k -1, k).
Sum_{k=0..n} t(n,k) = Sum_{k=0..n} T(n-k, k) = A136557(n). (End)
Showing 1-3 of 3 results.