A132684 a(n) = binomial(2^n + n + 1, n).
1, 4, 21, 220, 5985, 501942, 143218999, 145944307080, 542150225230185, 7398714129087308170, 372134605932348010322571, 69146263065062394421802892300, 47589861944854471977019273909187085
Offset: 0
Keywords
Examples
From _Paul D. Hanna_, Feb 25 2009: (Start) G.f.: A(x) = 1 + 4*x + 21*x^2 + 220*x^3 + 5985*x^4 + 501942*x^5 +... A(x) = 1/(1-x)^2 - log(1-2x)/(1-2x)^2 + log(1-4x)^2/((1-4x)^2*2!) - log(1-8x)^3/((1-8x)^2*3!) +- ... (End)
Links
- G. C. Greubel, Table of n, a(n) for n = 0..50
Crossrefs
Programs
-
Magma
[Binomial(2^n +n+1, n): n in [0..20]]; // G. C. Greubel, Mar 14 2021
-
Maple
A132684:= n-> binomial(2^n +n+1, n); seq(A132684(n), n=0..20); # G. C. Greubel, Mar 14 2021
-
Mathematica
Table[Binomial[2^n+n+1,n],{n,0,20}] (* Harvey P. Dale, Nov 10 2011 *)
-
PARI
a(n)=binomial(2^n+n+1,n)
-
PARI
{a(n)=polcoeff(sum(m=0,n,(-log(1-2^m*x))^m/((1-2^m*x +x*O(x^n))^2*m!)),n)} \\ Paul D. Hanna, Feb 25 2009
-
Sage
[binomial(2^n +n+1, n) for n in (0..20)] # G. C. Greubel, Mar 14 2021
Formula
a(n) = [x^n] 1/(1-x)^(2^n + 2).
G.f.: Sum_{n>=0} (-log(1 - 2^n*x))^n / ((1 - 2^n*x)^2*n!). - Paul D. Hanna, Feb 25 2009
a(n) ~ 2^(n^2) / n!. - Vaclav Kotesovec, Jul 02 2016