cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A132731 Triangle T(n,k) = 2 * binomial(n,k) - 2 with T(n,0) = T(n,n) = 1, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 4, 4, 1, 1, 6, 10, 6, 1, 1, 8, 18, 18, 8, 1, 1, 10, 28, 38, 28, 10, 1, 1, 12, 40, 68, 68, 40, 12, 1, 1, 14, 54, 110, 138, 110, 54, 14, 1, 1, 16, 70, 166, 250, 250, 166, 70, 16, 1, 1, 18, 88, 238, 418, 502, 418, 238, 88, 18, 1
Offset: 0

Views

Author

Gary W. Adamson, Aug 26 2007

Keywords

Examples

			First few rows of the triangle are:
  1;
  1,  1;
  1,  2,  1;
  1,  4,  4,  1;
  1,  6, 10,  6,  1;
  1,  8, 18, 18,  8,  1;
  1, 10, 28, 38, 28, 10,  1;
  1, 12, 40, 68, 68, 40, 12, 1;
  ...
		

Crossrefs

Cf. A000012, A007318, A103451, A132044, A132732 (row sums).

Programs

  • Magma
    T:= func< n,k | k eq 0 or k eq n select 1 else 2*Binomial(n,k) - 2 >;
    [T(n,k): k in [0..n], n in [0..12]]; // _G. C. Greubel, Feb 14 2021
  • Mathematica
    T[n_, k_]:= If[k==0 || k==n, 1, 2*Binomial[n, k] - 2];
    Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Feb 14 2021 *)
  • PARI
    t(n,k) =  2*binomial(n, k) + ((k==0) || (k==n)) - 2*(k<=n); \\ Michel Marcus, Feb 12 2014
    
  • Sage
    def T(n, k): return 1 if (k==0 or k==n) else 2*binomial(n, k) - 2
    flatten([[T(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 14 2021
    

Formula

T(n, k) = 2*A007318 + A103451 - 2*A000012, an infinite lower triangular matrix.
From G. C. Greubel, Feb 14 2021: (Start)
T(n, k) = 2*binomial(n, k) - 2 with T(n, 0) = T(n, n) = 1.
T(n, k) = 2*A132044(n, k) with T(n, 0) = T(n, n) = 1.
Sum_{k=0..n} T(n, k) = 2^(n+1) - 2*n - [n=0] = A132732(n). (End)

Extensions

Corrected by Jeremy Gardiner, Feb 02 2014
More terms from Michel Marcus, Feb 12 2014