cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A132732 Row sums of triangle A132731.

Original entry on oeis.org

1, 2, 4, 10, 24, 54, 116, 242, 496, 1006, 2028, 4074, 8168, 16358, 32740, 65506, 131040, 262110, 524252, 1048538, 2097112, 4194262, 8388564, 16777170, 33554384, 67108814, 134217676, 268435402, 536870856, 1073741766, 2147483588, 4294967234, 8589934528
Offset: 0

Views

Author

Gary W. Adamson, Aug 26 2007

Keywords

Comments

a(n) is the number of connected induced subgraphs in the (n+1)-path complement graph. - Eric W. Weisstein, Apr 11 2018

Examples

			a(3) = 10 = sum of row 3 terms of triangle A132731: (1 + 4 + 4 + 1).
a(3) = 10 = (1, 3, 3, 1) dot (1, 1, 1, 3) = (1 + 3 + 3 + 3).
		

Crossrefs

Cf. A132731.

Programs

  • Magma
    [1] cat [2*(2^n -n): n in [1..30]]; // G. C. Greubel, Feb 14 2021
  • Mathematica
    Join[{1}, Table[2 (2^n - n), {n, 20}]] (* or *)
    Join[{1}, LinearRecurrence[{4, -5, 2}, {2, 4, 10}, 20]] (* or *)
    CoefficientList[Series[(1 -2x +x^2 +2x^3)/((1-x)^2 (1-2x)), {x, 0, 20}], x] (* Eric W. Weisstein, Apr 11 2018 *)
  • PARI
    a(n) = if(n==0, 1, 2*(2^n -n)); \\ Altug Alkan, Apr 12 2018
    
  • Sage
    [1]+[2*(2^n -n) for n in (1..30)] # G. C. Greubel, Feb 14 2021
    

Formula

Binomial transform of [1, 1, 1, 3, 1, 3, 1, 3, 1, ... (3,1 repeated)].
a(n) = 2*(2^n-n) = 2*A000325(n), n>0. - R. J. Mathar, Sep 16 2017
G.f.: (1 - 2*x + x^2 + 2*x^3)/((1-x)^2 * (1-2*x)). - Eric W. Weisstein, Apr 11 2018
E.g.f.: -1 - 2*x*exp(x) + 2*exp(2*x). - G. C. Greubel, Feb 14 2021