A132732 Row sums of triangle A132731.
1, 2, 4, 10, 24, 54, 116, 242, 496, 1006, 2028, 4074, 8168, 16358, 32740, 65506, 131040, 262110, 524252, 1048538, 2097112, 4194262, 8388564, 16777170, 33554384, 67108814, 134217676, 268435402, 536870856, 1073741766, 2147483588, 4294967234, 8589934528
Offset: 0
Examples
a(3) = 10 = sum of row 3 terms of triangle A132731: (1 + 4 + 4 + 1). a(3) = 10 = (1, 3, 3, 1) dot (1, 1, 1, 3) = (1 + 3 + 3 + 3).
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Eric Weisstein's World of Mathematics, Connected Graph
- Eric Weisstein's World of Mathematics, Path Complement Graph
- Eric Weisstein's World of Mathematics, Vertex-Induced Subgraph
- Index entries for linear recurrences with constant coefficients, signature (4,-5,2).
Crossrefs
Cf. A132731.
Programs
-
Magma
[1] cat [2*(2^n -n): n in [1..30]]; // G. C. Greubel, Feb 14 2021
-
Mathematica
Join[{1}, Table[2 (2^n - n), {n, 20}]] (* or *) Join[{1}, LinearRecurrence[{4, -5, 2}, {2, 4, 10}, 20]] (* or *) CoefficientList[Series[(1 -2x +x^2 +2x^3)/((1-x)^2 (1-2x)), {x, 0, 20}], x] (* Eric W. Weisstein, Apr 11 2018 *)
-
PARI
a(n) = if(n==0, 1, 2*(2^n -n)); \\ Altug Alkan, Apr 12 2018
-
Sage
[1]+[2*(2^n -n) for n in (1..30)] # G. C. Greubel, Feb 14 2021
Formula
Binomial transform of [1, 1, 1, 3, 1, 3, 1, 3, 1, ... (3,1 repeated)].
a(n) = 2*(2^n-n) = 2*A000325(n), n>0. - R. J. Mathar, Sep 16 2017
G.f.: (1 - 2*x + x^2 + 2*x^3)/((1-x)^2 * (1-2*x)). - Eric W. Weisstein, Apr 11 2018
E.g.f.: -1 - 2*x*exp(x) + 2*exp(2*x). - G. C. Greubel, Feb 14 2021
Comments